Class discussion: How should we define a “pattern”?

Slides:



Advertisements
Similar presentations
Gene Control in Development
Advertisements

Homeobox Genes Body organisation.
Cell identity and positional information. How does a neuron find its target?
1 * egg: generate the system * larva: eat and grow
Drosophila melanogaster 2.5mm Movie. The Life Cycle 1-2 weeks 36hr 60 hr 12 hr.
MCDB 4650 Developmental Genetics in Drosophila
BE/APh161 – Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology.
Pattern formation in drosophila Katja Nowick TFome and Transcriptome Evolution
MSc GBE Course: Genes: from sequence to function Brief Introduction to Systems Biology Sven Bergmann Department of Medical Genetics University of Lausanne.
12 The Genetic Control of Development. Gene Regulation in Development Key process in development is pattern formation = emergence of spatially organized.
Chapter 13 Genetic Control of Development Jones and Bartlett Publishers © 2005.
Inferring regulatory networks from spatial and temporal gene expression patterns Y. Fomekong Nanfack¹, Boaz Leskes¹, Jaap Kaandorp¹ and Joke Blom² ¹) Section.
9.17 Generalized model of Drosophila anterior-posterior pattern formation (Part 1)
Embryonic Development & Cell Differentiation. During embryonic development, a fertilized egg gives rise to many different cell types Cell types are organized.
Anterior-posterior patterning in Drosophila
Flies are quick!. The fly body plan: each segment has a unique identity and produces distinctive structures 3 head 3 thorax 8 abdomen.
6 and 8 November, 2006 Chapter 18 Gene Regulation During Development.
An Exhibition of Applications: Molecular Computing Dr. Chrisantha Fernando Systems Biology Centre Birmingham University Dr. Chrisantha Fernando Systems.
Drosophila dorsal/ventral axis detemination How are different tissue types specified at distinct positions on the embryonic dorsal- ventral axis?
Chapter 9 - Axis specification in Drosophila Drosophila genetics is the groundwork for _______________l genetics Cheap, easy to breed and maintain Drosophila.
Embryonic Development
New Jersey City University Benjamin Griffel Freda Wasserstein-Robbins St. John’s University Xingguo Cheng Diane Hardej Stony Brook University David Green.
MATH 499 VIGRE Seminar: Mathematical Models in Developmental Biology
Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism.
Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.
Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings. BIOLOGY A GUIDE TO THE NATURAL WORLD FOURTH EDITION DAVID KROGH An Amazingly.
Gene Expression and Development II. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Please do course evaluations!
Development and Genes Part 1. 2 Development is the process of timed genetic controlled changes that occurs in an organism’s life cycle. Mitosis Cell differentiation.
Objective 7 TSWBat recognize the basic steps on the embryonic development of organisms and the role that gene expression plays in that development.
Chapter 18- Gene Regulation Part 3
Chapter 21 Reading Quiz When cells become specialized in structure & function, it is called … Name 2 of the 5 “model organisms”. What does it mean to be.
Paraxial and Intermediate mesoderm
PCB5065 Fall Exam 4 - Chase Name __________________________________
Development system
At the backboard: linear stability analysis of differential equations and of partial differential equations Cases to discuss: One-variable differential.
First 10 minutes to fill out online course evaluations
Two talks this week and next on morphogenesis
How to read data off a log axis
What is rate equation for [E] for two coupled substrate-enzyme reactions with same enyzme?
Drosophila Development: Embryogenesis
Sex-Specific Deployment of FGF Signaling in Drosophila Recruits Mesodermal Cells into the Male Genital Imaginal Disc  Shaad M. Ahmad, Bruce S. Baker 
Determination commits a cell to its final fate
1 * egg: generate the system * larva: eat and grow
Drosophila melanogaster
Whole-Embryo Modeling of Early Segmentation in Drosophila Identifies Robust and Fragile Expression Domains  Jonathan Bieler, Christian Pozzorini, Felix.
Volume 7, Issue 3, Pages (September 2004)
Notch target genes in presomitic mesoderm cells have
Morphogens: Precise Outputs from a Variable Gradient
Even-skipped gene regulation
Muscle Building Developmental Cell
Circadian Regulation of Gene Expression Systems in the Drosophila Head
Imaging in Systems Biology
FORMING THE NOSE VERSUS TAIL OF A FLY
Bicoid by the Numbers: Quantifying a Morphogen Gradient
Gene Regulation During Development
Vertebrate Segmentation: From Cyclic Gene Networks to Scoliosis
Segmentation in animals
Drosophila Development: Novel Signal Elicits Visceral Response
Christian Schröter, Andrew C. Oates  Current Biology 
Evolution: Hox genes and the cellared wine principle
Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning  Hernan G. Garcia, Mikhail Tikhonov, Albert.
Pattern formation: Wingless on the move
Coordination of Patterning and Growth by the Morphogen DPP
Genomic Analysis of Gastrulation and Organogenesis in the Mouse
Producing Cells Retain and Recycle Wingless in Drosophila Embryos
Variation in the Dorsal Gradient Distribution Is a Source for Modified Scaling of Germ Layers in Drosophila  Juan Sebastian Chahda, Rui Sousa-Neves, Claudia Mieko.
Genetics of Axis Specification in Drosophila: Anterior-Posterior Axis Determination Gilbert - Chapter 9.
Probing the Limits to Positional Information
Coordination of Patterning and Growth by the Morphogen DPP
The Bicoid Morphogen System
Presentation transcript:

Physics 414: Introduction to Biophysics Professor Henry Greenside November 30, 2017

Class discussion: How should we define a “pattern”? Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95

Role of biological patterns can be difficult to understand Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95 Many sea shells spend most of their life under sand and so are not visible, and they themselves have no vision. So why the spatial patterns?

Stripe formation in Drosophila embryo: how to get precise reproducible stripes? 1934 drawing by E. Wallace, Male on left, female on right 14 segments: 3 for head, 3 for thorax, 8 for abdomen Pattern of gene expression at 13th generation. Stained protein products of genes Bicoid in blue, Even-skipped (EVE) in green, Caudal in red. There are ~6,000 < 213 = 8192 nuclei in one large cell membrane. Radii of nuclei about 6 microns, L ~ 500 microns, about 130 nuclei per stripe. Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95

Light-sheet microscopy to visualize all surface cells of fly embryo as it evolves into larva Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95 https://youtu.be/qiabYntNMC8

Spatially varying concentrations of transcription factors in Drosophila embryo determine segments Figure 19.2 p 804 of PBOC2 Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95 Stripe 2 of EVE gene

Different mechanism lays out somites (precursors to ribs) of verterbrates (somitogenesis) Snake skeleton Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95 Unlike stripes in fly embryo that form all at once, somites form sequentially in time. Synchronized oscillations of cells in presomitic mesoderm are stopped at different points in cycle by traveling wave from anterior to posterior. See Fig 20.21 in Section 20.4.1, “clock-and wavefront” model of somitogenesis

French flag model of how fruit fly embryo sets up precise reproducible structures: a morphogen gradient Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95

Missing morphogen gradients explains why adult human brain cannot recover from stroke: axonal growth cones don’t know where to go https://youtu.be/lU9QH7pB6nU Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95 https://youtu.be/m1Y5ugEWF00

At the blackboard: mathematics of a point source, diffusion, and uniform degradation leads to a puzzle: length scale does not depend on size of domain Bicoid is first morphogen in temporal development that shows a pattern, starts off successive morphogen patterns. How to get what seems to be exponential spatial profile? Anterior source + diffusion + uniform degradation of Bicoid protein product gives exponential. Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95

Compare exponential with lambda for different fly species D and lambda should be about same for all species Answer is 0.05. The green dot is about 2/3 of the way between 0.01 and 0.1 so the 0.01 value is multiplied by 10^(2/3) = 100^(1/3). Since 4^3 = 64 and 5^3 = 125, 100^(1/3) is less than but closer to 125, so estimated value is 5 * 0.01 = 0.05. To two significant digits, 100^(1/3) = 0.47. Where some tickmarks would lie 0.02 Log[10,2] = 0.3 or about 1/3 from the left 0.03 Log[10,3] = 0.48 or about 0.5 0.04 Log[10,4] = 0.60 0.05 Log[10,5] = 0.70 0.06 Log[10,6] = 0.78 0.07 Log[10,7] = 0.85 0.08 Log[10,8] = 0.90 0.09 Log[10,9] = 0.95 Decay constants lambda from fitted exponentials to Bicoid gradients. Lambda increases approximately linearly with embryo size.

One-minute End-of-class Question