指導教授:林志明 級別:碩一 學生:呂致遠 Mail:s94662010@mail.ncue.edu.tw 彰師大積體電路設計所 A 9–50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13-μm CMOS Technology Chin-Shen Lin, Student Member, IEEE, Pei-Si Wu, Student Member, IEEE, Hong-Yeh Chang, Member, IEEE,and Huei Wang, Fellow, IEEE IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 5, MAY 2006 指導教授:林志明 級別:碩一 學生:呂致遠 Mail:s94662010@mail.ncue.edu.tw
Outline Abstact Introduction Circuit Design Schematic Chip photo Experimental Results Conclusion References
ABSTRACT Broadband microwave/millimeter-wave (MMW) Gilbert-cell mixer 1P8M 0.13-μm CMOS Microstrip line is employed for the matching networks and transformer design RF and LO to IF are better than 40 dB RF-to-LO and LO-to-RF isolations are all better than 20 dB.
INTRODUCTION CMOS technology demonstrated for wireless applications in (MMW) frequencies 60GHz LNA, 51GHz VCO SiGe based HBT Gilbert-cell mixer to 30.5GHz CMOS Gilbert-cell mixer below 10GHz A singly balance mixer from 26 to 34 GHz FET mixer from 30 to 40 GHz
Circuit Design Use Gilbert-cell core The charge injection technique is also employed in this circuit. Two resistors are used to inject current into Q1 and Q2 Two common drain buffer stages are added to achieve the impedance matching
Schematic Injection technique Gilbert-cell core common drain Buffer Balun Current Mirror
Chip photo IF+ IF- VDD LO GND ON WAFER RF
Experimental Results
0.13μm for ADS simulation
Conclusion A CMOS Gilbert-cell mixer is designed, fabricated, and measured for microwave/MMW applications. To the best of ourknowledge, this is the highest frequency CMOS Gilbert-cell mixer to date. This MMIC mixer exhibits a broadband mixer with conversion gain and is suitable for MMW receiver applications.
REFERENCES [1] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Design of CMOS for 60 GHz applications,” in IEEE int. Solid-State Circuits Conf. Dig., San Francisco, CA, 2004, pp. 440–538. [2] M. Tiebout, H. D.Wohlmuth, and W. Simburger, “A 1 V 51 GHz fullyintegrated VCO in 0.12- m CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 2002, pp. 238–239. [3] R. C. Liu, H. Y. Chang, C. H. Wang, and H. Wang, “A 63-GHz VCO using a standard 0.25- m CMOS process,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 2004, pp. 446–447. [4] H. Shigematsu, M. Sato, T. Hirose, F. Brewer, and M. Rodwell, “A 40 Gb/s CMOS distributed amplifier for fiber-optic communication systems,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, 2004, pp. 476–477. [5] B. S. Tzeng, C. H. Lien, H. Wang, Y. C. Wang, P. C. Chao, and C. H. Chen, “A 1–17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2564–2568, Nov. 2002. [6] E. Martins, E. M. Bastida, and J. W. Swart, “Design and performance of Gilbert cell mixer MMIC’s with GaAs PHEMT technology,” in Proc. IEEE Microw. Optoelectron. Conf., Aug. 2001, vol. 1, pp. 245–248.
[7] E. Martins, M. V. G. Gomes, E. M. Bastida, and J. W. Swart, “Design of a LNA and a Gilbert cell mixer MMIC’s with a GaAs PHEMT technology,” in Proc. IEEE Microw. Optoelectron. Conf., Aug. 1999, vol. 1, pp. 267–270. [8] K. Osafune and Y. Yamauchi, “20-GHz 5-dB-gain analog multipliers with AlGaAs/GaAs HBTs,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 3, pp. 518–520, Mar. 1994. [9] S. H. Lee, J. Y. Lee, S. Y. Lee, C. W. Park, S. H. Kim, H. C. Bae, J. Y. Kang, and K. I. Cho, “A 5.8 GHz mixer using SiGe HBT process,” in Eur. Microw. Conf. Dig., Oct. 2003, vol. 1, pp. 403–406. [10] K. B. Schad, H. Schumacher, and A. Schuppen, “Low-power active mixer for Ku-band application using SiGe HBT MMIC technology,” in IEEE MTT-S Int. Dig., Jun. 2000, vol. 1, pp. 397–400. [11] M. Wurzer, T. F. Meister, S. Hackl, H. Knapp, and L. Treitinger, “30 GHz active mixer in a Si/SiGe bipolar technology,” in Proc. Asia-Pacific Microw. Conf., Dec. 2000, pp. 780–782. [12] S. Hackl, J. Bock, M. Wurzer, and A. L. Scholtz, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Dig., Jun. 2002, vol. 2, pp. 1241–1244. [13] P. J. Sulivan, B. A. Xavier, and W. H.Ku, “Lowvoltage performance of a microwave CMOS Gilbert cell mixer,” IEEE J. Solid-State Circuits, vol. 32, no. 7, pp. 1151–1155, Jul. 1997. [14] M. B. Bendak, B. A. Xavier, and P. M. Chau, “A 1.2 GHz CMOS quadrature self-oscillating mixer,” in Proc. IEEE Int. Symp. Circuits Syst., Jun. 1999, vol. 5, pp. 434–437. [15] C. C. Tang, W. S. Lu, L. D. Van, and W. S. Feng, “A 2.4-GHz CMOS down-conversion doubly balanced mixer with low supply voltage,” in Proc. IEEE Int. Symp. Circuits Syst., May 2001, vol. 4, pp. 794–797. [16] T. Chouchane and M. Sawan, “A 5-GHz CMOS RF mixer in 0.18-m CMOStechnology,” in Proc. IEEE Conf. Elect. Comp. Eng.,May 2003, vol. 3, pp. 1905–1908
[17] X. Wang, R. Weber, and D. Chen, “A novel 1 [17] X.Wang, R.Weber, and D. Chen, “A novel 1.5 V CMFB CMOS downconversion mixer design for IEEE 802.11a WLAN systems,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, vol. 4, p. IV-373-6. [18] M. D. Tsai and H. Wang, “A 0.3–25-GHz ultra-wideband mixer using commercial 0.18- m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 522–524, Nov. 2004. [19] A. Verma, L. Gao, and J. Lin, “A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13- m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 493–495, Aug. 2005. [20] F. Ellinger, “26–34 GHz CMOS mixer,” Electron. Lett., vol. 40, pp. 1417–1419, Oct. 2004. [21] ——, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2559–2565, Aug. 2005. [22] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1382–1391, May 2004. [23] L. A. NacEachern and T. Manku, “A charge-injection method for Gilbert cell biasing,” in Proc. IEEE Canadian Conf. Elect. Comp. Eng., May 1998, vol. 1, pp. 365–368.
Thanks for your listening