Chapter 9 Computation of the Discrete Fourier Transform

Slides:



Advertisements
Similar presentations
DFT & FFT Computation.
Advertisements

Digital Kommunikationselektronik TNE027 Lecture 5 1 Fourier Transforms Discrete Fourier Transform (DFT) Algorithms Fast Fourier Transform (FFT) Algorithms.
Chapter 10 The Z-Transform
第 12 章位运算 C 语言兼具高级语言及低级语言的特性,因此 适合编写系统软件。 C 语言具备低级语言的特性 就在于它能直接对硬件进行操作,即位运算。 所谓位运算是指,按二进制位进行的运算。 例如,将一个存储单元中各二进位左移或右移一 位等。
Chapter 8: The Discrete Fourier Transform
Lecture #17 INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh,
Introduction to Fast Fourier Transform (FFT) Algorithms R.C. Maher ECEN4002/5002 DSP Laboratory Spring 2003.
例9:例9: 第 n-1 行( -1 )倍加到第 n 行上,第( n-2 ) 行( -1 )倍加到第 n-1 行上,以此类推, 直到第 1 行( -1 )倍加到第 2 行上。
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
Lecture #18 FAST FOURIER TRANSFORM INVERSES AND ALTERNATE IMPLEMENTATIONS Department of Electrical and Computer Engineering Carnegie Mellon University.
Discrete-Time Signal processing Chapter 3 the Z-transform
9的乘法口诀 1 .把口诀说完全。 二八( ) 四六( ) 五八( ) 六八( ) 三七( ) 三八( ) 六七( ) 五七( ) 五六( ) 十六 四十八 四十二 二十四 二十一 三十五 四十 二十四 三十 2 .口算, 并说出用的是哪句口诀。 8×8= 4×6= 7×5= 6×8= 5×8=
 符号表  标识符的作用: 声明部分:定义了各种对象及对应的属性和 使用规则。 程序体:对所定义的对象进行各种操作。 $ididname IdnameAttributeIR  必要性 Token : 新表-符号表(种类、类型等信息):
Fast Fourier Transforms
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Biomedical Signal processing Chapter 4 Sampling of Continuous- Time Signals Zhongguo Liu.
Discrete-Time and System (A Review)
CHAPTER 8 DSP Algorithm Implementation Wang Weilian School of Information Science and Technology Yunnan University.
Chapter 6 Digital Filter Structures
Hossein Sameti Department of Computer Engineering Sharif University of Technology.
1 Signals and Systems Lecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform.
Chapter Two– Data Numbering & Character Encoding System in Microcomputer Principles of Microcomputers 2015年10月22日 2015年10月22日 2015年10月22日 2015年10月22日 2015年10月22日.
? 小数乘整数 制作人:吴运粮 复习 1.下面乘积得多少? 8 × 3= 8 × 3用加法表示什么意思? 3个8相加 24.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
1 Signals and Systems Lecture 26 Properties of Laplace Transform Analysis LTI System using LT System Function.
Digital Signal Processing Chapter 3 Discrete transforms.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
第五章 特征值与特征向量 —— 幂法 /* Power Method */ 计算矩阵的主特征根及对应的特征向量 Wait a second, what does that dominant eigenvalue mean? That is the eigenvalue with the largest.
Professor A G Constantinides 1 Discrete Fourier Transforms Consider finite duration signal Its z-tranform is Evaluate at points on z-plane as We can evaluate.
Fast Fourier Transforms. 2 Discrete Fourier Transform The DFT pair was given as Baseline for computational complexity: –Each DFT coefficient requires.
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
EE345S Real-Time Digital Signal Processing Lab Fall 2006 Lecture 17 Fast Fourier Transform Prof. Brian L. Evans Dept. of Electrical and Computer Engineering.
بسم الله الرحمن الرحيم Digital Signal Processing Lecture 14 FFT-Radix-2 Decimation in Frequency And Radix -4 Algorithm University of Khartoum Department.
Chapter 9. Computation of Discrete Fourier Transform 9.1 Introduction 9.2 Decimation-in-Time Factorization 9.3 Decimation-in-Frequency Factorization 9.4.
Discrete Fourier Transform
1 Chapter 8 The Discrete Fourier Transform (cont.)
UNIT-II FOURIER TRANSFORM
Signals and Systems Lecture 13
Chapter 4 Discrete-Time Signals and transform
DIGITAL SIGNAL PROCESSING ELECTRONICS
Fast Fourier Transforms Dr. Vinu Thomas
Fast Fourier Transform
Real-time double buffer For hard real-time
Lecture #17 INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM
Real-time 1-input 1-output DSP systems
4.1 DFT In practice the Fourier components of data are obtained by digital computation rather than by analog processing. The analog values have to be.
Chapter 8 The Discrete Fourier Transform
Fast Fourier Transformation (FFT)
Discrete-Time Signal processing Chapter 3 the Z-transform
Discrete-Time Signal processing Chapter 3 the Z-transform
Z TRANSFORM AND DFT Z Transform
Chapter 9 Computation of the Discrete Fourier Transform
LECTURE 18: FAST FOURIER TRANSFORM
Discrete-Time Signal processing Chapter 3 the Z-transform
Chapter 19 Fast Fourier Transform
Chapter 8 The Discrete Fourier Transform
Discrete-Time Signal processing Chapter 3 the Z-transform
Zhongguo Liu Biomedical Engineering
The Report of Monographic Study
Chapter 8 The Discrete Fourier Transform
Lecture #18 FAST FOURIER TRANSFORM ALTERNATE IMPLEMENTATIONS
Zhongguo Liu Biomedical Engineering
Fast Fourier Transform (FFT) Algorithms
Lecture #17 INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM
Fast Fourier Transform
LECTURE 18: FAST FOURIER TRANSFORM
Presentation transcript:

Chapter 9 Computation of the Discrete Fourier Transform Biomedical Signal processing Chapter 9 Computation of the Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control Science and Engineering, Shandong University 2018/9/12 1 Zhongguo Liu_Biomedical Engineering_Shandong Univ.

Chapter 9 Computation of the Discrete Fourier Transform 9.0 Introduction 9.1 Direct Computation Of The Discrete Fourier Transform 9.2 decimation-in-time FFT Algorithms 9.3 decimation-in-frequency FFT Algorithms 9.4 practical considerations 9.5 ......

9.0 Introduction Implement a convolution of two sequences by the following procedure: 1. Compute the N-point DFT and of the two sequence and 2. Compute for 3. Compute as the inverse DFT of Why not convolve the two sequences directly? DFT has efficient FFT(Fast Fourier Transform) algorithms that can be orders of magnitude more efficient than others.

9.1 Direct Computation of the Discrete Fourier Transform The DFT pair was given as DFTcomputational complexity: Each DFT coefficient requires N complex multiplications; N-1 complex additions All N DFT coefficients require N2 complex multiplications; N(N-1) complex additions 4 4

9.1 Direct Computation of the Discrete Fourier Transform Most fast methods are based on Periodicity properties Periodicity in n and k; Complex conjugate symmetry 5 5

9.1.1 Direct Evalutation of the Defination of DFT Complexity in terms of real operations 4N2 real multiplications N(4N-2) real additions : N (2(N-1) +2N ) 6 6

9.1.1 Direct Evalutation of the Defination of DFT Conjugate symmetry: group terms in the summation for n and (N-n): 乘法次数减少一半 7

9.1.1 Direct Evalutation of the Defination of DFT Conjugate symmetry: group terms in the summation for n and (N-n): similarly, 乘法次数减少一半 8

9.1.2 The Goertzel Algorithm Makes use of the periodicity Multiply DFT equation with this factor Define using x[n]=0 for n<0 and n>N-1, yk[n] can be viewed as output of a filter to input x[n] Filter impulse response : X[k] is the output of the filter at time n=N. DFT of x[n] Goertzel Filter 9 9

9.1.2 The Goertzel Algorithm Goertzel Filter: for causal LTI system x[n]=0, n<0 Computational complexity for one X[k]. 4N real multiplications; 4N real additions; Slightly less efficient than the direct method(4N, 4N-2); But it avoids computation and storage of (N2 个) (N 个) 10

Second Order Goertzel Filter 为便于分析 Goertzel Filter x[n]=0, n<0 Multiply both numerator and denominator for causal LTI system 实现极点因式 实现零点因式 每个K只需计算 1次 11 11

Second Order Goertzel Filter 除n=0时y[0]=x[0], y[n]对每个n有两个实数乘4个实数加 实现极点因式: 实现零点因式: same Complexity for one X[k] ( x[n], y[n] is complex). Poles: 2N real multiplications and 4N real additions Zeros: computed only once: 4 real ×and 4 real + . total: 2(N+2) real ×and 4(N+1) real + . 乘 N /2 Complexity for all N X[k] Each pole is used for X[k], X[N-k] Approximately N2 real multiplications and 2N2 real additions. More efficient than the direct method. 12 12

Second Order Goertzel Filter If we only need to evaluate M X[k] , the total computation is proportional to NM, Goertzel method is attractive when M is small. The computation for FFT algorithm is Nlog2N. if M < log2N, either Goertzel Algorithm or direct method is more efficient than FFT. 13 13

9.2 Decimation-in-Time FFT Algorithms Makes use of periodicity and symmetry of Consider special case of N=2ν : integer ν power of 2 Separate x[n] into two sequences of length N/2 Even-numbered sequence ; Odd-numbered sequences . 14 14

9.2 decimation-in-time FFT Algorithms Substitute variables n=2r for n even and n=2r+1 for odd N/2-point DFT g[r] h[r] G[k] and H[k] are the N/2-point DFTs of each subsequence: g[n]=x[2n] and h[n] =x[2n+1] 15 15

9.2 decimation-in-time FFT Algorithms G[k] and H[k] are the N/2-point DFTs of each subsequence: g[n]=x[2n] and h[n] =x[2n+1] 16 16

2018年9月12日3时8分 8-point DFT using DIT Figure 9.4

computational complexity Two N/2-point DFTs 2(N/2)2 complex multiplications 2(N/2)2 complex additions Combining the DFT outputs N complex multiplications N complex additions Total complexity N2/2+N complex multiplications N2/2+N complex additions. More efficient than direct DFT when N>2 18 18

9.2 decimation-in-time FFT Algorithms Repeat same process , Divide N/2-point DFTs into Two N/4-point DFTs Combine outputs N=8 19 19

9.2 decimation-in-time FFT Algorithms After two steps of decimation in time Repeat until we’re left with two-point DFT’s 20 20

9.2 decimation-in-time FFT Algorithms flow graph for 8-point decimation in time binary code: N=8=23 3 stages: N=2m m=log2N m级: 每级乘法和加法个数为N Complexity: Nlog2N complex multiplications and additions 21 21

Butterfly Computation Flow graph of basic butterfly computation We can implement each butterfly with one multiplication Final complexity for decimation-in-time FFT (N/2)log2N complex multiplications and Nlog2N additions 22 22

9.2 decimation-in-time FFT Algorithms DIT flow graph for 8-point decimation in time N=8=23 generalized to N=2m m=log2N m级: 每级乘法和加法个数为N Complexity: Nlog2N complex multiplications and Nlog2N additions 23 23

9.2.1 Generalization and Programming the FFT Final flow graph for 8-point decimation in time N=8=23 generalized to N=2m m=log2N -1 m级: 每级乘法N/2个,加法N个 -1 the figure serves as proof, and for FFT programming. -1 Complexity: (Nlog2N)/2 complex multiplications and Nlog2N additions 24 24

9.2.2 In-Place Computation同址运算 DIT flow graphs require two sets of registers: Input, output or memory units In-Place Computation needs one set of registers. 25 25

9.2.2 In-Place Computation同址运算 Note the arrangement of the input indices Bit reversed indexing(码位倒置) 26 26

normal order binary coding for position: 对应x[n]的序号 从上向下出现的顺序 000 001 2018年9月12日3时8分 normal order binary coding for position: 对应x[n]的序号 从上向下出现的顺序 000 001 010 011 100 101 110 111 出现的顺序不是输入序号 Figure 9.13

cause of bit-reversed order binary coding for position: 对应x[n]的序号 从上向下出现的顺序 是把二进制序号翻转了 序号的3次奇偶分解 000 001 010 011 100 101 110 111 Figure 9.13

9.2.3 Alternative forms Bit reversed indexing(码位倒置) Note the arrangement of the input indices Bit reversed indexing(码位倒置) 29 29

input in normal order and output in bit-reversed order 9.2.3 Alternative forms Figure 9.14 input in normal order and output in bit-reversed order strongpoint:in-place computations shortcoming:non-sequential access of elements of intermediate arrays.

strongpoint: Input, output same normal order Figure 9.15 strongpoint: Input, output same normal order shortcoming:not in-place computation; non-sequential access of elements of intermediate arrays.

Same structure, Input bit-reversed order , output normal order Figure 9.16 Same structure, Input bit-reversed order , output normal order shortcoming:not in-place computation strongpoint: sequential access of data

9.3 Decimation-In-Frequency FFT Algorithm The DFT equation Split the DFT equation into even and odd frequency indexes N/2-point DFT 33 33

9.3 Decimation-In-Frequency FFT Algorithm The DFT equation N/2-point DFT 34 34

DIF decomposition: N-point DFT to N/2-point DFT 35 35

DIF decomposition: N-point DFT to N/2-point DFT 2点 DFT 8=23 N=2m m=log2N 36 36

2-point DFT in the last stage of decimation-in-frequency decomposition 37 37

(Nlog2N)/2 complex multiplications and Nlog2N additions Final flow graph of decimation-in-frequency decomposition of 8-point DFT N=8=23 generalized to N=2m m=log2N m级: 每级乘法N/2个,加法N个 N/2=4-point DFT N/4=2-point DFT Complexity: (Nlog2N)/2 complex multiplications and Nlog2N additions 42 42

9.3 .1 In-Place Computation同址运算 DIF FFT 结构相同,乘数排列区别大 DIT FFT 43 43

9.3 .1 In-Place Computation同址运算 DIF FFT transpose DIT FFT 44 44

9.3 .2 Alternative forms transpose decimation-in-frequecy Butterfly Computation transpose decimation-in-time Butterfly Computation 45 45

The DIF FFT is the transpose of the DIT FFT 46 46

9.3 .2 Alternative forms DIF FFT transpose DIT FFT

Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 9 HW 9.1, 9.6, 9.7, Zhongguo Liu_Biomedical Engineering_Shandong Univ. 50 2018/9/12 返 回 上一页 下一页