Rational and Irrational Numbers TSWBAT identify types of rational numbers; recognize irrational numbers
Number Systems There are two primary types of numbers Real Imaginary
Sets of Numbers Natural Numbers (counting numbers) Whole Numbers {1, 2, 3, 4…} Whole Numbers Natural numbers plus zero {0, 1, 2, 3, 4…}
Sets of Numbers Integers Real Numbers Whole numbers and their opposites (… -2, -1, 0, 1, 2 …} Real Numbers Any number that can be graphed on a number line
Sets of numbers Often we deal with just some of the real numbers at one time. We designate which ones inside brackets. {evens} {-2, -1, 0, 1, 2} Dots … indicate that the set goes on forever {… -2, -1, 0, 1, 2 …}
Real Numbers Real Numbers Graph the following on your number line The set of numbers consisting of the positive and negative numbers and zero All rational and irrational numbers Graph the following on your number line ½, -3. -¾, 0, 6.34, -2.95, 5, -5
Two Types of real numbers Rational numbers A number that can be expressed as the quotient of two integers (a/b) where b≠0 1/3 (fractions) -4 (integers) 1.3 (decimals) 1.35 (repeating decimals) √4 (perfect squares)
Two Types of real numbers Irrational Numbers A real number that cannot be expressed as the quotient of two integers √2 (imperfect squares) Π pi
Take out a piece of paper Write your heading Categorize the following numbers. Remember, a number can fall into more than just one set of numbers 8 -11 -3.5 ½ - √3
In your workbook On a separate sheet of paper answer questions 1-18 on page 1 and 1-4 on page 3 Turn in to the bin when you finish If you don’t finish in class finish for homework