COMP9024: Data Structures and Algorithms

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of.
Advertisements

Heaps1 Part-D2 Heaps Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is a pair (key, value)
Data Structures Lecture 7 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
The Priority Queue Abstract Data Type. Heaps. Adaptable Priority Queue. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich,
CSC401 – Analysis of Algorithms Lecture Notes 5 Heaps and Hash Tables Objectives: Introduce Heaps, Heap-sorting, and Heap- construction Analyze the performance.
© 2004 Goodrich, Tamassia Priority Queues1 Heaps: Tree-based Implementation of a Priority Queue.
© 2004 Goodrich, Tamassia Priority Queues1. © 2004 Goodrich, Tamassia Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection.
Chapter 8: Priority Queues
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Priority Queue Sorting (§ 8.1.4) We can use a priority queue to sort a set.
Priority Queues1 Part-D1 Priority Queues. Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is.
Chapter 8: Priority Queues and Heaps Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
1 Priority Queues CPS212 Gordon College VIP. 2 Introduction to STL Priority Queues Adaptor container - underlying container may be either: – a template.
© 2004 Goodrich, Tamassia Priority Queues1. © 2004 Goodrich, Tamassia Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection.
Heaps and Priority Queues Priority Queue ADT (§ 2.4.1) A priority queue stores a collection of items An item is a pair (key, element) Main.
Adaptable Priority Queues1 3 a 5 g 4 e © 2010 Goodrich, Tamassia.
Priority Queues & Heaps Chapter 9. Iterable Collection Abstract Collection Queue List Abstract Queue Priority Queue Array List Abstract List Vector Stack.
PRIORITY QUEUES AND HEAPS CS16: Introduction to Data Structures & Algorithms Tuesday, February 24,
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
Priority Queues and Heaps. Outline and Reading PriorityQueue ADT (§8.1) Total order relation (§8.1.1) Comparator ADT (§8.1.2) Sorting with a Priority.
Chapter 2.4: Priority Queues and Heaps PriorityQueue ADT (§2.4.1) Total order relation (§2.4.1) Comparator ADT (§2.4.1) Sorting with a priority queue (§2.4.2)
Chapter 2: Basic Data Structures. Spring 2003CS 3152 Basic Data Structures Stacks Queues Vectors, Linked Lists Trees (Including Balanced Trees) Priority.
12/23/2015 2:18 AMPriority Queues1 Sell100IBM$122 Sell300IBM$120 Buy500IBM$119 Buy400IBM$118.
CS 2468: Assignment 2 (Due Week 9, Tuesday. Drop a hard copy in Mail Box 75 or hand in during the lecture) Use array representation (double a[]) to implement.
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
Heaps © 2010 Goodrich, Tamassia. Heaps2 Priority Queue ADT  A priority queue (PQ) stores a collection of entries  Typically, an entry is a.
Priority Queues Last Update: Oct 23, 2014 EECS2011: Priority Queues1.
Adaptable Priority Queues1 3 a 5 g 4 e © 2013 Goodrich, Tamassia, Goldwasser.
1 COMP9024: Data Structures and Algorithms Week Seven: Priority Queues Hui Wu Session 1, 2016
Adaptable Priority Queues1 3 a 5 g 4 e © 2014 Goodrich, Tamassia, Goldwasser Presentation for use with the textbook Data Structures and Algorithms in Java,
Heaps and Priority Queues What is a heap? A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
Sorting With Priority Queue In-place Extra O(N) space
Priority Queues 5/3/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Heaps (8.3) CSE 2011 Winter May 2018.
Priority Queues © 2010 Goodrich, Tamassia Priority Queues 1
Heaps 8/2/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Priority Queues Chuan-Ming Liu
09 Priority Queues Hongfei Yan Apr. 27, 2016.
Part-D1 Priority Queues
Heaps © 2010 Goodrich, Tamassia Heaps Heaps
Heaps 9/13/2018 3:17 PM Heaps Heaps.
Chapter 2: Basic Data Structures
Heaps and Priority Queues
Chapter 2, Sections 4 and 5 Priority Queues Heaps Dictionaries
Priority Queues and Heaps
Part-D1 Priority Queues
Heaps and Priority Queues
Priority Queues 4/6/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Heaps 11/27/ :05 PM Heaps Heaps.
Tree Representation Heap.
Heaps A heap is a binary tree.
Heaps and Priority Queues
© 2013 Goodrich, Tamassia, Goldwasser
Copyright © Aiman Hanna All rights reserved
Heaps 12/4/2018 5:27 AM Heaps /4/2018 5:27 AM Heaps.
Ch. 8 Priority Queues And Heaps
Priority Queues Sell 100 IBM $ $120 Buy 500 $ $118
Heaps and Priority Queues
Copyright © Aiman Hanna All rights reserved
Priority Queues Sell 100 IBM $ $120 Buy 500 $ $118
© 2013 Goodrich, Tamassia, Goldwasser
Adaptable Priority Queues
Heaps © 2014 Goodrich, Tamassia, Goldwasser Heaps Heaps
Lecture 9 CS2013.
Heaps and Priority Queues
Priority Queues © 2010 Goodrich, Tamassia Priority Queues
1 Lecture 10 CS2013.
CS210- Lecture 15 July 7, 2005 Agenda Median Heaps Adaptable PQ
CS210- Lecture 14 July 5, 2005 Agenda Inserting into Heap
Heaps 9/29/2019 5:43 PM Heaps Heaps.
CS210- Lecture 13 June 28, 2005 Agenda Heaps Complete Binary Tree
Presentation transcript:

COMP9024: Data Structures and Algorithms Week Seven: Priority Queues Hui Wu Session 2, 2014 http://www.cse.unsw.edu.au/~cs9024

Outline Priority Queues Heaps Adaptable Priority Queues

Priority Queues

Priority Queue ADT A priority queue stores a collection of entries. Each entry is a pair (key, value). Main methods of the Priority Queue ADT: insert(k, x) Inserts an entry with key k and value x. removeMin() Removes and returns the entry with smallest key. Additional methods min() returns, but does not remove, an entry with smallest key size(), isEmpty() Applications: Standby flyers Auctions Stock market

Total Order Relations Keys in a priority queue can be arbitrary objects on which an order is defined. Two distinct entries in a priority queue can have the same key. Mathematical concept of total order relation  Reflexive property: x  x Antisymmetric property: x  y  y  x  x = y Transitive property: x  y  y  z  x  z

Entry ADT An entry in a priority queue is simply a key-value pair. Priority queues store entries to allow for efficient insertion and removal based on keys. Methods: key(): returns the key for this entry. value(): returns the value associated with this entry. As a Java interface: /** * Interface for a key-value * pair entry **/ public interface Entry { public Object key(); public Object value(); }

Comparator ADT The primary method of the Comparator ADT: A comparator encapsulates the action of comparing two objects according to a given total order relation. A generic priority queue uses an auxiliary comparator. The comparator is external to the keys being compared When the priority queue needs to compare two keys, it uses its comparator. The primary method of the Comparator ADT: compare(a, b): Returns an integer i such that i < 0 if a < b, i = 0 if a = b, and i > 0 if a > b; an error occurs if a and b cannot be compared.

Example Comparator Lexicographic comparison of 2-D points: /** Comparator for 2D points under the standard lexicographic order. */ public class Lexicographic implements Comparator { int xa, ya, xb, yb; public int compare(Object a, Object b) throws ClassCastException { xa = ((Point2D) a).getX(); ya = ((Point2D) a).getY(); xb = ((Point2D) b).getX(); yb = ((Point2D) b).getY(); if (xa != xb) return (xb - xa); else return (yb - ya); } Point objects: /** Class representing a point in the plane with integer coordinates */ public class Point2D { protected int xc, yc; // coordinates public Point2D(int x, int y) xc = x; yc = y; } public int getX() { return xc; } public int getY() { return yc; }

Priority Queue Sorting Algorithm PQ-Sort(S, C) Input sequence S, comparator C for the elements of S Output sequence S sorted in increasing order according to C { P = priority queue with comparator C ; while (S.isEmpty () ) { e = S.removeFirst (); P.insert (e, 0) ; } while ( P.isEmpty() ) { e = P.removeMin().key(); S.insertLast(e);} } We can use a priority queue to sort a set of comparable elements: Insert the elements one by one with a series of insert operations. Remove the elements in sorted order with a series of removeMin operations. The running time of this sorting method depends on the priority queue implementation.

List-based Priority Queue Implementation with an unsorted list: Performance: insert takes O(1) time since we can insert the item at the beginning or end of the list. removeMin and min take O(n) time since we have to traverse the entire list to find the smallest key. Implementation with a sorted list: Performance: insert takes O(n) time since we have to find the place where to insert the item. removeMin and min take O(1) time, since the smallest key is at the beginning. 4 5 2 3 1 1 2 3 4 5

Selection-Sort Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list. Running time of Selection-sort: Inserting the elements into the priority queue with n insert operations takes O(n) time. Removing the elements in sorted order from the priority queue with n removeMin operations takes time proportional to 1 + 2 + …+ n Selection-sort runs in O(n2) time.

Selection-Sort Example List S Priority Queue P Input: (7,4,8,2,5,3,9) () Phase 1 (a) (4,8,2,5,3,9) (7) (b) (8,2,5,3,9) (7,4) .. .. .. . . . (g) () (7,4,8,2,5,3,9) Phase 2 (a) (2) (7,4,8,5,3,9) (b) (2,3) (7,4,8,5,9) (c) (2,3,4) (7,8,5,9) (d) (2,3,4,5) (7,8,9) (e) (2,3,4,5,7) (8,9) (f) (2,3,4,5,7,8) (9) (g) (2,3,4,5,7,8,9) ()

Insertion-Sort Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list. Running time of Insertion-sort: Inserting the elements into the priority queue with n insert operations takes time proportional to 1 + 2 + …+ n Removing the elements in sorted order from the priority queue with a series of n removeMin operations takes O(n) time. Insertion-sort runs in O(n2) time.

Insertion-Sort Example List S Priority queue P Input: (7,4,8,2,5,3,9) () Phase 1 (a) (4,8,2,5,3,9) (7) (b) (8,2,5,3,9) (4,7) (c) (2,5,3,9) (4,7,8) (d) (5,3,9) (2,4,7,8) (e) (3,9) (2,4,5,7,8) (f) (9) (2,3,4,5,7,8) (g) () (2,3,4,5,7,8,9) Phase 2 (a) (2) (3,4,5,7,8,9) (b) (2,3) (4,5,7,8,9) .. .. .. . . . (g) (2,3,4,5,7,8,9) ()

In-place Insertion-sort Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place. A portion of the input list itself serves as the priority queue. For in-place insertion-sort We keep sorted the initial portion of the list. We can use swaps instead of modifying the list. 5 4 2 3 1 5 4 2 3 1 4 5 2 3 1 2 4 5 3 1 2 3 4 5 1 1 2 3 4 5 1 2 3 4 5

Heaps 2 5 6 9 7

Recall Priority Queue ADT A priority queue stores a collection of entries. Each entry is a pair (key, value). Main methods of the Priority Queue ADT: insert(k, x) inserts an entry with key k and value x. removeMin() removes and returns the entry with smallest key. Additional methods: min() returns, but does not remove, an entry with smallest key size(), isEmpty() Applications: Standby flyers Auctions Stock market

Recall Priority Queue Sorting Algorithm PQ-Sort(S, C) Input sequence S, comparator C for the elements of S Output sequence S sorted in increasing order according to C { P = priority queue with comparator C ; while (S.isEmpty () ) { e = S.removeFirst (); P.insert (e, 0) ; } while ( P.isEmpty() ) { e = P.removeMin().key(); S.insertLast(e);} } We can use a priority queue to sort a set of comparable elements: Insert the elements with a series of insert operations Remove the elements in sorted order with a series of removeMin operations The running time depends on the priority queue implementation: Unsorted sequence gives selection-sort: O(n2) time Sorted sequence gives insertion-sort: O(n2) time Can we do better?

Heaps A heap is a binary tree storing keys at its nodes and satisfying the following properties: Heap-Order: for every internal node v other than the root, key(v)  key(parent(v)) Complete Binary Tree: let h be the height of the heap for i = 0, … , h - 1, there are 2i nodes of depth i at depth h - 1, the internal nodes are to the left of the external nodes The last node of a heap is the rightmost node of depth h. 2 5 6 9 7 last node

Height of a Heap Theorem: A heap storing n keys has height O(log n). Proof: (we apply the complete binary tree property) Let h be the height of a heap storing n keys. Since there are 2i keys at depth i = 0, … , h - 1 and at least one key at depth h, we have n  1 + 2 + 4 + … + 2h-1 + 1 . Thus, n  2h , i.e., h  log n. depth keys 1 1 2 h-1 2h-1 h 1

Heaps and Priority Queues We can use a heap to implement a priority queue. We store a (key, element) item at each internal node. We keep track of the position of the last node. For simplicity, we show only the keys in the pictures. (2, Sue) (5, Pat) (6, Mark) (9, Jeff) (7, Anna)

Insertion into a Heap Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap. The insertion algorithm consists of three steps: Find the insertion node z (the new last node) Store k at z Restore the heap-order property (discussed next) 2 5 6 z 9 7 insertion node 2 5 6 z 9 7 1

Upheap After the insertion of a new key k, the heap-order property may be violated. Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node. Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k. Since a heap has height O(log n), upheap runs in O(log n) time. 2 1 5 1 5 2 z z 9 7 6 9 7 6

Removal from a Heap Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap. The removal algorithm consists of three steps Replace the root key with the key of the last node w Remove w Restore the heap-order property (discussed next) 2 5 6 w 9 7 last node 7 5 6 w 9 new last node

Downheap After replacing the root key with the key k of the last node, the heap-order property may be violated. Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root. Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k. Since a heap has height O(log n), downheap runs in O(log n) time. 7 5 5 6 7 6 w w 9 9

Updating the Last Node The insertion node can be found by traversing a path of O(log n) nodes: Go up until a left child or the root is reached If a left child is reached, go to the right child Go down left until a leaf is reached Similar algorithm for updating the last node after a removal.

Heap-Sort Consider a priority queue with n items implemented by means of a heap the space used is O(n) methods insert and removeMin take O(log n) time methods size, isEmpty, and min take time O(1) time Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time. The resulting algorithm is called heap-sort. Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort.

Array List-based Heap Implementation We can represent a heap with n keys by means of an array list of length n + 1. For the node at rank i the left child is at rank 2i the right child is at rank 2i + 1 Links between nodes are not explicitly stored. The cell of at rank 0 is not used.. Operation insert corresponds to inserting at rank n + 1. Operation removeMin corresponds to removing at rank n. Yields in-place heap-sort. 2 5 6 9 7 2 5 6 9 7 1 3 4

Merging Two Heaps We are given two two heaps and a key k. 3 2 We are given two two heaps and a key k. We create a new heap with the root node. storing k and with the two heaps as subtrees We perform downheap to restore the heap-order property. 8 5 4 6 7 3 2 8 5 4 6 2 3 4 8 5 7 6

Bottom-up Heap Construction We can construct a heap storing n given keys in using a bottom-up construction with log n phases. In phase i, pairs of heaps with 2i -1 keys are merged into heaps with 2i+1-1 keys. 2i -1 2i+1-1

Example (1/4) 16 15 4 12 6 7 23 20 25 5 11 27 16 15 4 12 6 7 23 20

Example (2/4) 25 5 11 27 16 15 4 12 6 9 23 20 15 4 6 23 16 25 5 12 11 9 27 20

Example (3/4) 7 8 15 4 6 23 16 25 5 12 11 9 27 20 4 6 15 5 8 23 16 25 7 12 11 9 27 20

Example (4/4) 10 4 6 15 5 8 23 16 25 7 12 11 9 27 20 4 5 6 15 7 8 23 16 25 10 12 11 9 27 20

Analysis We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path) Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n). Thus, bottom-up heap construction runs in O(n) time. Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.

Adaptable Priority Queues 3 a 5 g 4 e Adaptable Priority Queues

Recall the Entry and Priority Queue ADTs An entry stores a (key, value) pair within a data structure Methods of the entry ADT: key(): returns the key associated with this entry value(): returns the value paired with the key associated with this entry Priority Queue ADT: insert(k, x) inserts an entry with key k and value x removeMin() removes and returns the entry with smallest key min() returns, but does not remove, an entry with smallest key size(), isEmpty()

Motivating Example Suppose we have an online trading system where orders to purchase and sell a given stock are stored in two priority queues (one for sell orders and one for buy orders) as (p,s) entries: The key, p, of an order is the price The value, s, for an entry is the number of shares A buy order (p,s) is executed when a sell order (p’,s’) with price p’<p is added (the execution is complete if s’>s) A sell order (p,s) is executed when a buy order (p’,s’) with price p’>p is added (the execution is complete if s’>s) What if someone wishes to cancel their order before it executes? What if someone wishes to update the price or number of shares for their order?

Methods of the Adaptable Priority Queue ADT remove(e): Remove from P and return entry e. replaceKey(e,k): Replace with k and return the key of entry e of P; an error condition occurs if k is invalid (that is, k cannot be compared with other keys). replaceValue(e,x): Replace with x and return the value of entry e of P.

Example Operation Output P insert(5,A) e1 (5,A) insert(3,B) e2 (3,B),(5,A) insert(7,C) e3 (3,B),(5,A),(7,C) min() e2 (3,B),(5,A),(7,C) key(e2) 3 (3,B),(5,A),(7,C) remove(e1) e1 (3,B),(7,C) replaceKey(e2,9) 3 (7,C),(9,B) replaceValue(e3,D) C (7,D),(9,B) remove(e2) e2 (7,D)

Locating Entries In order to implement the operations remove(k), replaceKey(e), and replaceValue(k), we need fast ways of locating an entry e in a priority queue. We can always just search the entire data structure to find an entry e, but there are better ways for locating entries.

Location-Aware Entries A locator-aware entry identifies and tracks the location of its (key, value) object within a data structure Intuitive notion: Coat claim check Valet claim ticket Reservation number Main idea: Since entries are created and returned from the data structure itself, it can return location-aware entries, thereby making future updates easier

List Implementation A location-aware list entry is an object storing key value position (or rank) of the item in the list In turn, the position (or array cell) stores the entry Back pointers (or ranks) are updated during swaps trailer header nodes/positions 2 c 4 c 5 c 8 c entries

Heap Implementation A location-aware heap entry is an object storing key value position of the entry in the underlying heap In turn, each heap position stores an entry Back pointers are updated during entry swaps 2 d 4 a 6 b 8 g 5 e 9 c

Performance Using location-aware entries we can achieve the following running times (times better than those achievable without location-aware entries are highlighted in red): Method Unsorted List Sorted List Heap size, isEmpty O(1) O(1) O(1) insert O(1) O(n) O(log n) min O(n) O(1) O(1) removeMin O(n) O(1) O(log n) remove O(1) O(1) O(log n) replaceKey O(1) O(n) O(log n) replaceValue O(1) O(1) O(1)

References Chapter 8, Data Structures and Algorithms by Goodrich and Tamassia.