Lecture Objectives: Answer questions related to HW 4

Slides:



Advertisements
Similar presentations
Objectives Control Terminology Types of controllers –Differences Controls in the real world –Problems –Response time vs. stability.
Advertisements

Environmental Controls I/IG Lecture 14 Mechanical System Space Requirements Mechanical System Exchange Loops HVAC Systems Lecture 14 Mechanical System.
Objectives Finish with ducts and fans Define project topics.
HVAC Systems Overview HVAC Overview - # 1 Tom Lawrence
Announcement Course Exam October 6 th (Thursday) In class: 90 minutes long Examples are posted on the course website.
Objectives Finish with Multizone Systems
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Lecture Objectives: Finish wit introduction of HVAC Systems Introduce major ES software.
Lecture Objectives: Model HVAC Systems –HW3 Asignemnet Learn about eQUEST software –How to conduct parametric analysis of building envelope.
Lecture Objectives: Final discussion about HW3 Introduce more final project topics Continue with HVAC Systems.
Objectives Discuss Project Topics Learn to design VAV and DOAS System.
Lecture Objectives: Learn about automatic control Use life-cycle cost analysis integrated in eQUEST.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Equation solvers Matlab Free versions / open source codes: –Scilab MathCad: Mathematica:
Objectives Select project topics Review for exam Learn about DOAS systems.
Important variables Water: Air: Conversion:
Announcements Midterm Project Prepare groups of 3 to 4 students You can submit the list at the end of next class Midterm Exam 03/09/10 - In class Exam:
Lecture Objectives: Finish with HVAC Systems Discuss Final Project.
Lecture Objectives: Specify Exam Time Finish with HVAC systems –HW3 Introduce Projects 1 & 2 –eQUEST –other options.
Lecture Objectives: Finish with software intro HVAC Systems
Lecture Objectives: Learn about Chiller modeling
Objectives Discus final project Load calculation.
Lecture Objectives: Clarify issues related to eQUEST –for midterm project Learn more about various HVAC - economizer - heat recovery Discuss about the.
Objectives More HVAC systems - Sorption (absorption) chillers
Final Project Presentation On Monday, same classroom at noon PowerPoint (5 minutes presentation) Upload the file before the class Approximately 6-7 slides.
Energy Plus & Open Studio Class
Final Projects Grading criteria is posted on the course website Preliminary results are due Next Tuesday Final Project delivery on Monday Dec. 7 th –Final.
Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.
Lecture Objectives: Discuss the exam problems Answer question about HW 3 and Final Project Assignments Building-System-Plant connection –HVAC Systems.
Lecture Objectives: Differences in Conduction Calculation in Various Energy Simulation Programs Modeling of HVAC Systems.
Lecture Objectives: Define the final project Deliverables and Grading policy Analyze factors that influence accuracy of our modeling study Learn about.
Announcement Course Exam: Next class: November 3rd In class: 90 minutes long Examples are posted on the course website.
Final Project Format and Deliverables Examples
Lecture Objectives: Analyze several modeling problems –Examples from the final project list Economizer Solar collectors Phase change thermal storage materials.
Final Project I need your proposal about the final project! It should include –Title –Group members –Objective –Short description –Methodology –Expected.
Reminder about the Filed Trip Tomorrow 8 am St. Edward's University We will meet at 8:00 am at the south entrance of the new Science building (visitor.
Objectives Propose residential system related final project –Compare VAV systems with DOAS systems.
Lecture Objectives: Review Psychrometrics Introduce Air Handling Unit
Lecture Objectives: Learn about Plumbing System Modeling
Announcements Next class is the course evaluation
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Lecture Objectives: Discuss Final Project
Objectives Finish analysis of most common HVAC Systems
Lecture Objectives: Discuss HW4, answer your questions
We need to decide about the time for the final project presentation
Announcements End of the class – course evaluation
Lecture Announcement Developing Concrete with a Structural and Thermal Insulation Performance and Homogenous and Stratified Approach Dr. Mauricio Lopez.
HVAC Basics Arkan Arzesh HVAC – Heating, Ventilation, Air-conditioning.
Lecture Objectives: Discuss Project 1 assignment
Lecture Objectives: Continue with cooling towers
Announcement No project presentations !
Lecture Objectives: Finish with HVAC systems
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Lecture Objectives: Answer questions related to HW 4
Energy Efficiency in District Coiling System
Chapter 11: DESCRIPTION OF HVAC SYSTEMS
Project.
Objectives Discuss Project 1 (eQUEST) Learn about HVAC Systems
October 31st In class test!
Lecture Objectives: Discuss HW4 Chiller modeling
Objectives Learn about 1) Control for HVAC systems
Lecture Objectives: Review Psychrometrics Introduce Air Handling Unit
Lecture Objectives: Discuss HW4 parts
Lecture Objectives: Discuss Projects 1 and 2
When: Monday 26, 4 pm Where: ECJ Building, Classroom 3.402
Announcement No project presentations !
Announcements Exam 1 Next Class (Thursday, March 14th):
Objective Revie the Cooling Cycle Learn about air distribution systems
Chapter 11: DESCRIPTION OF HVAC SYSTEMS
Presentation transcript:

Lecture Objectives: Answer questions related to HW 4 Solar Systems Continue with HVAC system

Building HVAC Systems (Primary and Secondary Building HVAC Systems) AHU – Air Handling Unit Distribution systems Fresh air for ventilation AHU Primary systems Air transport Electricity Secondary systems Cooling (chiller) Heating (boilers) Building envelope HVAC systems affect the energy efficiency of the building as much as the building envelope. In many situation even more! (or Gas) Gas

Examples of HVAC System Multizone Dual Duct System Multi zone VAV with Re-heaters 55°F 90°F 55°F P C P C Perimeter (P) Core (C)

Dual Duct vs. VAV with Re-heaters for Different Weather Conditions What happens if outdoor air is A, B, C A B C

Example of a Plant System (Chilled Water System) Air cooled chiller Chiller with a cooling tower COP ~ 3 COP ~ 5 COP = Cooling Energy / Electric Energy ( same units)

Two Basic Approaches for Modeling of HVAC and Building Envelope Load System Plant model Building Qbuiolding Heating/Cooling System Q including Ventilation and Dehumidification Plant Integrated models Building Heating/Cooling System Plant

Example of a HVAC Model Schematic of simple air handling unit (AHU) Mixing box m - mass flow rate [kg/s], T – temperature [C], w [kgmoist/kgdry air], r - recirculation rate [-], Q energy/time [W]

Example of a Plant Models (Chiller) P electric () = COP () x Q cooling coil () TOA What is COP for this air cooled chiller ? T Condensation = TOA+ ΔT Evaporation at 1oC TCWS=5oC TCWR=11oC water Building users (cooling coil in AHU) COP is changing with the change of TOA

Plant model Refrigeration Cycle Released energy (condenser) T outdoor air T cooled water - What is COP? - How the outdoor air temperature affects chiller performance? Cooling energy (evaporator)

Chiller model: COP= f(TOA , Qcooling , chiller properties) Chiller data: QNOMINAL nominal cooling power, PNOMINAL electric consumption for QNOMINAL The consumed electric power [KW] under any condition Available capacity as function of evaporator and condenser temperature Cooling water supply Outdoor air Full load efficiency as function of condenser and evaporator temperature Efficiency as function of percentage of load Percentage of load: The coefficient of performance under any condition:

Models integrated in HVAC System simulation Example: Economizer (fresh air volume flow rate control) Controlled device is damper - Damper for the air - Valve for the liquids fresh air damper mixing recirc. air T & RH sensors

HVAC Control Economizer (fresh air volume flow rate control) Controlled device is damper - Damper for the air - Valve for the liquids fresh air damper mixing recirc. air % fresh air T & RH sensors 100% Minimum for ventilation

Economizer – cooling regime How to control the fresh air volume flow rate? If TOA < Tset-point → Supply more fresh air than the minimum required The question is how much? Open the damper for the fresh air and compare the Troom with the Tset-point . Open till you get the Troom = Tset-point If you have 100% fresh air and your still need cooling use cooling coil. What are the priorities: - Control the dampers and then the cooling coils or - Control the valves of cooling coil and then the dampers ? Defend by SEQUENCE OF OERATION the set of operation which HVAC designer provides to the automatic control engineer % fresh air 100% Minimum for ventilation