XAX Can DM and DBD detectors combined?

Slides:



Advertisements
Similar presentations
Masaki Yamashita XMASS at Kamioka Large Scale Cryogenic detector in the underground laboratory Masaki Yamashita Kamioka observatory, ICRR, Univ. Of Tokyo.
Advertisements

Katsushi Arisaka, UCLA 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka 2/24/2012.
1 Aaron Manalaysay Physik-Institut der Universität Zürich CHIPP 2008 Workshop on Detector R&D June 12, 2008 R&D of Liquid Xenon TPCs for Dark Matter Searches.
Status of the XMASS experiment S. Moriyama for the XMASS collaboration Kamioka observatory, Institute for Cosmic Ray Research, Univ. of Tokyo, July 27,
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Status XMASS experiment M. Nakahata for XMASS collaboration Kamioka Observatory, ICRR, University of Tokyo Dark2007, September 28, 2007.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Future of DM Detection Mark Boulay, Los Alamos Mark Boulay CLEAN: A Detector for Dark Matter and Low-Energy Solar ’s Liquid neon as a target for dark matter.
PANDAX Results and Outlook
Search for Dark Matter at CJPL with PANDAX
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A WIMP Detector based on Gaseous Neon The Future of Dark Matter Detection.
Cygnus 2013/06/05 Nagoya univ. H.Uchida for XMASS collaboration 1.
PSD 7, Liverpool, September 2005 Position Sensitive Detectors for Astroparticle Physics Timothy J Sumner Imperial College London.
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
4/21/2011Katsushi Arisaka, UCLA 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room-Temperature, Gaseous-Neon- Based Underground.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
DEAP Part I: Andrew Hime (Los Alamos National Laboratory) DEAP Concept DEAP-0 Test-Results & Requirements of a DEAP Program Synergy with CLEAN Program.
The current status of XMAS S Introduction Current status of prototype detector Next step Summary Cryodet 1 Y.Koshio for XMASS collaboration (Kamioka observatory,
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
XMASS experiment Current status 10 th ICEPP Symposium in Hakuba 16 Feb 2004 Yohei Ashie ICRR Univ.of Tokyo.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
in Beijing August 18, 2004 Recent status of the XMASS project Physics goals at XMASS Overview of XMASS Current status of R&D Summary.
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
XMASS experiment Ultra-low BG, multi-purpose detector 3kg fiducial volume (FV) prototype detector 1ton (100kg FV) detector for DM Search S. Moriyama for.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
DARK MATTER SEARCH Carter Hall, University of Maryland.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Characterization of the QUartz Photon Intensifying Detector (QUPID) Artin Teymourian UCLA Dark Matter Group Dept. of Physics and Astronomy.
1 Status and background considerations of XMASS experiment Yeongduk Kim Sejong University for the XMASS collaboration LRT2006 Oct. 3, 2006.
An Alternative Design based on Inverse Beta Detection Jim Lund Sandia National Laboratories History The immediate future The 2-3 yr. time frame The beehive.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Direct Search for Dark Matter with XENON100
PandaX DM Search Exp Xiangdong Ji (季向东)
On behalf of TEXONO collaboration
Prompt Gamma Activation Analysis on 76Ge
Double Beta Decay - status and future
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
Status of 100Mo based DBD experiment
Simulation for DayaBay Detectors
University of South Dakota
Neutral Particles.
Solar Neutrino Problem
Signal and Background in LENS
Status of Neutron flux Analysis in KIMS experiment
XMASS Y. Suzuki (for the XMASS Collaboration) Kamioka Observatory,
LUX: Shedding Light on Dark Matter
Davide Franco for the Borexino Collaboration Milano University & INFN
Presentation transcript:

XAX Can DM and DBD detectors combined? Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu 9/12/2018 Katsushi Arisaka

XAX paper by UCLA Group 9/12/2018 Katsushi Arisaka, UCLA

XAX (Xenon-Argon-Xenon) Water Tank Veto WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino WIMP (Spin even) 12 m 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m 12 m 14 m 9/12/2018 Katsushi Arisaka, UCLA

Separation of Odd and Even SpinXenon 9/12/2018 Katsushi Arisaka

Why Multiple Targets? Systematic Study of Dark Matter Interaction Target mass dependence of Cross section and Energy spectrum Xenon vs. Argon Spin dependence of Cross section 129/131Xe (Spin odd) vs. 132/134/136Xe (Spin even) Precise determination of Mass and Cross section Neutrino-less Double Beta Decay  > 1028 years by 136Xe Solar Neutrino 1% measurement of the pp chain flux by 129/131Xe. Supernova Neutrino Measurement of the total energy and temperature by coherent elastic scattering. 9/12/2018 Katsushi Arisaka, UCLA

Energy Spectrums (Natural Xe) 100 GeV WIMP (10-44 cm2) 2 DBD (1022 yrs) pp Solar Be7 Solar 0 DBD (1027 yrs) B8 Solar 9/12/2018 Katsushi Arisaka, UCLA

Concept of one of XAX Detectors Liquid Xe (19 ton) TPB + Resistive Coating (ATO) + Acrylic Vessel Radiation- free Photon Detector (3” QUPID, Total 3950) 2 m OFHC (Oxygen-Free High Conductivity Copper) Vacuum Vessel 9/12/2018 Katsushi Arisaka, UCLA

Concept of Double Layer XAX 2 m -17.5 kV -200 kV -10 kV 0 V Gas Xe 136Xe 7 ton Radiation-free Photon Detectors (QUPID) TPB +ATO + Acrylic Vessel + ITO Coating TPB + ITO Acrylic Sheet + ITO + TPB Coating TPB + Acrylic Sheet + ATO Coating 129/131Xe 12 ton 9/12/2018 Katsushi Arisaka, UCLA

Equipotential lines and Electron Trajectories 0 V ITO (Indium Tin Oxide) Transparent Conductive Coating (~1 k⁄☐) -6 kV -13.5 kV ATO (Antimony Tin Oxide) Transparent Resistive Coating (~ 1 G⁄☐) Electron Trajectories ITO (Indium Tin Oxide) Transparent Conductive Coating (~1 k⁄☐) -200 kV -6kV 0 V 9/12/2018 Katsushi Arisaka, UCLA

Expected No. of Photoelectrons per keV (Abs. Length = 10 m, Scat Expected No. of Photoelectrons per keV (Abs. Length = 10 m, Scat. Length = 50 cm) PTFE on Side Wall (Reflectivity = 98%) Photon Detectors on Side Wall ~ 1.5 pe/keV ~ 3 pe/keV 9/12/2018 Katsushi Arisaka, UCLA

Expected No. of Photoelectrons per keV (Center of 2m Xenon Detector) Absorption Length Scattering Length 50 cm 1 m 2 m PTFE on side (Reflectivity = 95%) 5 m 1.0 1.2 1.4 10 m 1.7 2.0 2.2 20 m 2.4 2.8 3.1 PTFE on side (Reflectivity = 98%) 1.3 1.5 2.1 2.3 2.6 3.0 3.2 PTFE on side (Reflectivity = 99%) 1.8 2.7 3.3 QUPID on side 1.6 2.5 3.5 3.8 4.3 9/12/2018 Katsushi Arisaka, UCLA

(1) Dark Matter 9/12/2018 Katsushi Arisaka, UCLA

Gamma Backgrounds after S2/S1 cut (1 mBq / QUPID, 2m Xenon Detector)  BG (0 cm shield) 100 GeV WIMP (10-44 cm2)  BG (5 cm shield) 2 DBD (1022 yrs) 1 TeV  BG (10 cm shield) pp Solar Neutrino 10 TeV Be7 Solar Neutrino 9/12/2018 Katsushi Arisaka, UCLA

Xenon (2m) Expected Background from Gammas (1 mBq / QUPID, 1 year, Multi Hit Cut, No S2/S1 cut) Xenon (2m) 0.01  /10ton-year after S2/S1 cut < 10–8 DRU 10 ton 9/12/2018 Katsushi Arisaka, UCLA

Neutron Backgrounds after Multi-hit Cut (1 n/year/QUPID, 2m Xenon Detector) 100 GeV WIMP (10-44 cm2) 1 TeV 10 TeV 0 cm 10 cm 20 cm 30 cm 9/12/2018 Katsushi Arisaka, UCLA

Xenon (2m) Expected Background from Neutrons (1 n/year/QUPID, 10 year, Multi Hit Cut) Xenon (2m) 0.4 n /10ton-year < 10–8 DRU 10 ton 9/12/2018 Katsushi Arisaka, UCLA

Expected No. of WIMP Signals and Backgrounds (10 ton-year of Liquid Xenon, Window = 3 – 15 keVee) No. of Background Events No. of WIMP Signals 10-44 cm2 1 mBq /QUPID Gamma (no cut) 10-45 cm2 G1 Gamma (S2/S1 cut) 10-46 cm2 G2 Neutron (no cut) 10-47 cm2 pp-chain Solar (S2/S1 cut) G3 Neutron (multi-hit cut) 10-48 cm2 2-Neutrino DBD (S2/S1 cut) 19.2 ton 14.0 ton 9.8 ton Self Shielding Cut (cm from wall) WIMP Mass (GeV) 9/12/2018 Katsushi Arisaka, UCLA

Summary of WIMP Detection Sensitivity: < 10-47 cm2 at 100 GeV WIMP mass. (< 10-46 cm2 at 1 TeV) Background: Completely free from external gamma ray backgrounds. < 10 mBq / PMT QUPID is < 1 mBq (Goal is < 0.1 mBq) 10 cm active shielding S2/S1 cut Neutrons background is negligible too. < 1 neutron / year / PMT required. QUPID goal is < 0.1 n/year (Current R8778 is < 5 n/year) Irreducible background comes from pp-chain solar neutrino. ~10-7 /kg/keV/day  ~0.5 event /ton/year (in 3-15 keVee window) Assuming 99% rejection by S2/S1 cut. Still investigating other backgrounds Internal Krypton and Radon in Xenon Photon Detection: Complete surface coverage by QUPID ensures > 3 pe/keV. 9/12/2018 Katsushi Arisaka, UCLA

(2) Neutrino-less Double Beta Decay 9/12/2018 Katsushi Arisaka, UCLA

Sensitivity of Neutrinoless Double Beta Decay to Neutrino Mass Normal Scheme Inverted Scheme DBD Life Time Cosmology (Figure from C. Giunti) 1026 yr 1027 yr 1028 yr Laurent SIMARD, LAL - Orsay 9/12/2018 Katsushi Arisaka, UCLA

Energy Resolution of XENON 10 236 keV Xe-131 164 keV Xe-129 236 keV Xe-131 164 keV = 0.9% at 2.5 MeV FWHM = 50 keV expected 9/12/2018 Katsushi Arisaka

136Xe Double Beta Decay and Gamma Background (1 mBq / QUPID, 2m Xenon Detector) 0 cm 2 DBD (1022 yrs) 10 cm  BG ~ 10-7 dru FWHM = 50 keV  5*10-4 /FWHM*kg*year 20 cm 30 cm 40 cm 50 cm 0 DBD (1027 yrs) B8 Solar 9/12/2018 Katsushi Arisaka, UCLA

Expected Background from Gammas (1 mBq / QUPID, 1 year, Multi Hit Cut) < 10–8 DRU 4.1 ton 9/12/2018 Katsushi Arisaka, UCLA

Expected No. of DBD Signals and Backgrounds (10 ton-year of Liquid Xenon, Window = 2479 ± 25 keV) No. of Background Events No. of 0-Neutrino DBD Signals 1 mBq/Qupid 0.1 mBq/Qupid 19.2 ton 14.0 ton 9.8 ton 6.6 ton 4.1 ton Self Shielding Cut (cm from wall) Life Time (Year) 9/12/2018 Katsushi Arisaka, UCLA

Expected No. of DBD Signals and Backgrounds (1 ton-year of Liquid Xenon, Window = 2479 ± 25 keV) No. of Background Events No. of 0-Neutrino DBD Signals 1 mBq/Qupid 0.1 mBq/Qupid 2.4 ton 1.2 ton 0.5 ton 0.2 ton Self Shielding Cut (cm from wall) Life Time (Year) 9/12/2018 Katsushi Arisaka, UCLA

Double Beta Decay Sensitivities XAX (1 mBq) 136Xe 4000 50 0.0005 ~1027 15 – 95 XAX (0.1mBq) 136Xe 4000 50 0.00005 ~1028 10 – 60 9/12/2018 Katsushi Arisaka, UCLA

Double Beta Decay Experiments EXO200 EXO 1Ton CANDLES III No. of Backgrounds (/year) 1025 yrs 1026 yrs 1027 yrs 1028 yrs CUORE I NEMO3 (Mo) XAX (Enriched) XAX (Natural) XENON1T CUORE III Cuoricino Super-NEMO (Se) GERDA III GERDA I CUORE II COBRA EXO 1Ton (Ba tag) NEMO3 (Se) GERDA II Mass (kg) 9/12/2018 Katsushi Arisaka, UCLA

Summary of DBD Detection All the gamma ray background can be effectively removed. Low-radioactive QUPID is essential. < 1 mBq for  > 1027 years < 0.1 mBq for  > 1028 years Extensive active shielding. 40 cm cut required (4 ton fiducial volume out of 19 ton.) Multiple hit cut. Ba2+ tagging is not necessary, unlike EXO. The tail from two neutrino double beta decays is negligible. based on XENON10, the energy resolution of the double-phase Xenon should be superior to EXO.  = 1.0% at 2.5 MeV (FWHM = 50 keV) > 3 pe/keV is required 9/12/2018 Katsushi Arisaka

From MAX to XAX 9/12/2018 Katsushi Arisaka, UCLA

MAX Detector 40Ar Xe 5 ton (2.5 ton) 2.4 ton (1.2 ton) DUSEL S4 Study funded by NSF ($3.5M) 9/12/2018 Katsushi Arisaka, UCLA

G2 MAX 40Ar Xe 1 m 2 m WIMP WIMP Double Beta Decay 10 ton (5 ton) 9/12/2018 Katsushi Arisaka, UCLA

G3 XAX Phase I 40Ar Xe 70 ton (50 ton) 129/131Xe 2 m 4 m WIMP WIMP Double Beta Decay Solar Neutrino 40Ar 70 ton (50 ton) Xe 20 ton (10 ton) 129/131Xe 2.4 ton (1.2 ton) 2 m 4 m 9/12/2018 Katsushi Arisaka, UCLA

G4 XAX Phase II 40Ar 136Xe 129/131Xe 70 ton (50 ton) 1.2 m 2 m 4 m WIMP WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m 9/12/2018 Katsushi Arisaka, UCLA

MAX and XAX G2 G3 G4 Detector Size Target Mass 1m x 1m 2m x 2m 4m x 4m   Detector Size Target Mass 1m x 1m 2m x 2m 4m x 4m Total Mass Fiducial Mass QUPID 3" at Top 190 750 3000 6" at Side/Bottom 210 850 3400 (ton) MAX Xe 2.4 1.2 40Ar 10 5 XAX (Phase I) 129/131Xe 20 70 50 XAX (Phase II) 13 6 136Xe 7 4 G2 G3 G4 9/12/2018 Katsushi Arisaka, UCLA

MAX and XAX G2 G3 G4 Detector Size Target Mass No. Events 1m x 1m   Detector Size Target Mass No. Events 1m x 1m 2m x 2m 4m x 4m Total Mass Fiducial Mass WIMP Double Beta Decay pp Solar Neutrino Super Nova Neutrino QUPID 10-46 cm2 1027 years 10 kpc 3" at Top 190 750 3000 100 GeV 3x1053 erg 6" at Side/Bottom 210 850 3400 / 1yr / 1 yr (ton) MAX Xe 2.4 1.2 12 0.4 11 40Ar 10 5 14 XAX (Phase I) 129/131Xe 500 11  20 100 3.3 95 70 50 141 XAX (Phase II) 13 6 60 2500 56 136Xe 7 4 40 30 39 G2 G3 G4 9/12/2018 Katsushi Arisaka, UCLA

MAX and XAX G2 G3 G4 Detector Size Target Mass No. Events 1m x 1m   Detector Size Target Mass No. Events 1m x 1m 2m x 2m 4m x 4m Total Mass Fiducial Mass Cost for Target WIMP Double Beta Decay pp Solar Neutrino Super Nova Neutrino QUPID 10-46 cm2 1027 years 10 kpc 3" at Top 190 750 3000 100 GeV 3x1053 erg 6" at Side/Bottom 210 850 3400 / 1yr / 1 yr Cost for QUPID $2M $9M $36M (ton) MAX Xe 2.4 1.2 $7M 12 0.4 11 40Ar 10 5 $3M 14 XAX (Phase I) 129/131Xe ?  500 11  20 $40M 100 3.3 95 70 50 $20M 141 XAX (Phase II) 13 6 ? 60 2500 56 136Xe 7 4 40 30 39 G2 G3 G4 9/12/2018 Katsushi Arisaka, UCLA

Summary 9/12/2018 Katsushi Arisaka, UCLA

Summary on XAX XAX incorporates several innovative concepts: The largest detector (> 10 ton) compatible with Argon and Xenon Background free Radiation-free photon detector: QUPID Thick (20 cm) self shielding Multi-hit cut and S2/S1 cut by double phase TPC Pulse shape discrimination (for Ar) with “reconstructed” S1 signal Best photon collection 4π coverage of photon detectors (like single phase detectors) XAX can achieve four important scientific goals: Systematic study of WIMP properties Sensitivity below 10-47 cm2 at 100 GeV (< 10-46 cm2 at 1 TeV) Determination of Mass and Cross section Target mass (A) dependence of Cross section (Argon vs. Xenon) Spin dependence (129/131Xe vs. 132/134/136Xe) Neutrino-less Double Beta Decay (by 136Xe) Sensitivity up to 1028 years pp-chain Solar Neutrino (by 129/131Xe) Flux with 1% statistical error Supernova Neutrino by elastic scattering Total Energy with 8% statistical error Temperature with 5% statistical error 9/12/2018 Katsushi Arisaka, UCLA