Kyoko Iizuka (Seikei Univ.) T.Kon (Seikei Univ.)

Slides:



Advertisements
Similar presentations
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Advertisements

A Realization of Effective SUSY Zhen-hua Zhao ITP,CAS Liu & Zhao arXiv:
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
Maria Jose Costa, CERN DIS 2004 April 14 th -18 th 2004, Slovakia b -mass effects in 3 and 4 jets events with the DELPHI detector at LEP b u,d,s.
The Top Quark and Precision Measurements S. Dawson BNL April, 2005 M.-C. Chen, S. Dawson, and T. Krupovnikas, in preparation M.-C. Chen and S. Dawson,
Group F : Loop Calculations LCWS Stanford Univ. K.Kato (Kogakuin) Highlights.
Two-Loop Decoupling Coefficients for  s within MSSM Outline Motivation Two-Loop Decoupling Coefficients within MSSM Phenomenological Results Luminita.
Decay widths of all MSSM scalars at full one-loop level Loops and Legs in QFT, Wörlitz, Germany, 29 th April 2010 Helmut Eberl together with Hana Hlucha.
Lausanne 02/03/2001 A.Jacholkowska1 Supersymmetric Higgs(es) in LHC(b) Agnieszka Jacholkowska 2 nd Generator Workshop Lausanne 02/03/2001.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Two-body sfermion decays at full one-loop level within the MSSM Mgr. Hana Hlucha.
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Powerpoint Templates Page 1 Powerpoint Templates Looking for a non standard supersymmetric Higgs Guillaume Drieu La Rochelle, LAPTH.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
Reconstruction of Fundamental SUSY Parameters at LHC and LC
Distinguishing MSSM and Dirac neutralinos at the ILC Majorana (MSSM) ⇔ Dirac (MRSSM) S.Y. Choi (Chonbuk, Korea) SYC, Drees, Freitas, Zerwas, PRD76 (2008)
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
The last talk in session-3. Full one-loop electroweak radiative corrections to single photon production in e + e - ACAT03, Tsukuba, 4 Dec LAPTH.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Loop calculations in the MSSM Corfu Summer School, workshop, 4 th September 2009 Helmut Eberl.
Electroweak Correction for the Study of Higgs Potential in LC LAPTH-Minamitateya Collaboration LCWS , Stanford U. presented by K.Kato(Kogakuin.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
Status of LC Physics Study in Japan (II) Higgs/GRACE /Simulation study towards Higgs precision Measurement JAPAN LC Physics study group and KEK Minamitateya.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Six-Fermion Production at ILC with Grcft Calculation of the Six-Fermion Production at ILC with Grcft -New algorithm for Grace- KEK Minamitateya group Yoshiaki.
Session 3 J. Fujimoto KEK May 27, Feynman Diagram Calculations automatization tree level loop level multi-loop Event Generators.
Precise prediction for ILC experiment HAN, Liang Univ. of Science &Technology of China ( on behalf of U.S.T.C Hep Phenomenology Group )
WEAK DECAYS: ALL DRESSED UP
Origin of large At in the MSSM with extra vector-like matters
One-loop electroweak corrections to double Higgs production in e+e-HH -Current status of Higgs studies with GRACE- KEK Minamitateya - LAPTH.
Peter Richardson IPPP, Durham University
QCD CORRECTIONS TO bb →h h
Particle Physics Tour with CalcHEP
ACFA 7th Nov Taipei Taiwan
Current status and future prospects
Complementarity between FCC-ee and FCC-hh Searches for BSM Physics
K Kato, E de Doncker, T Ishikawa and F Yuasa ACAT2017, August 2017
Gluon Contribution to Dark Matter Direct Detection
Single top production at LHC : a complete
Precision Control and GRACE
Physics Overview Yasuhiro Okada (KEK)
Search for BSM at LHC Fayet Fest Paris November 9, 2016 Dirk Zerwas
NMSSM & B-meson Dileptonic Decays
Flavor Violating Higgs Decays in Supersymmetry with and without R parity --- Talk at SUSY 06 OTTO C. W. KONG --- Nat'l Central U, Taiwan.
Minoru Nagai (ICRR, Univ. of Tokyo)
Higgs and SUSY at future colliders
Measurements of some J/ and c decays at BES
Phenomenology of SUSY Models with Non-universal Sfermions
Searches at LHC for Physics Beyond the Standard Model
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
Physics at a Linear Collider
University of Tsukuba, Japan Particle Physics Phenomenology,
Physics Overview Yasuhiro Okada (KEK)
The Color Octet Effect from at B Factorry
Single Diffractive Higgs Production at the LHC *
SUSY Searches with ZEUS
Physics Overview Yasuhiro Okada (KEK)
SUSY SEARCHES WITH ATLAS
Associated production of Higgs boson with μ+μ - at CEPC
Institute of Theoretical Physics, CAS
SUSY and B physics observables
SUSY parameter determination at LHC and ILC
Mass Reconstruction Methods in ATLAS
Presentation transcript:

Systematic study of 1-Loop correction on sparticle decay widths using GRACE/SUSY-loop Kyoko Iizuka (Seikei Univ.) T.Kon (Seikei Univ.) K.Kato (Kogakuin Univ.) T.Ishikawa, Y.Kurihara (KEK) M.Jimbo (Chiba Univ. of Commerce) M.Kuroda (Meiji Gakuin Univ.) RADCOR2009 25-30 October 2009, Ascona, Switzerland

Contents 1. Motivation 2. GRACE SYSTEM 3. MSSM parameters (SPS1a’) 4. Squark decay 5. Gluino decay 6. Summary

1. Motivation The best candidate for BSM Precision study @ILC Search for SUSY particles @LHC&ILC Precision study @ILC The accuracy of theoretical prediction should be less than the accuracy of experimental measurement 1-loop correction to major possible decays of sfermion and gluino with GRACE/SUSY-loop

2. GRACE SYSTEM 1. Generates all Feynman diagrams automatically 2. Generates physical amplitudes automatically 3. Incorporates libraries (Loop integral, Kinematics, etc.) 4. Integrates the matrix element by the adaptive Monte Carlo method (BASES) 5. Does Monte Carlo event generation (SPRING) 6. Enables various self-check for the results (UV cancellation, IR cancellation, NLG invariance, …) Other automatic SUSY 1-loop systems SloopS(Boudjema et al., 05), FeynArt/Calc(Hahn, 01, 06)

Nonlinear gauge (NLG) fixing terms in MSSM (1) (2) Gauge invariant scheme[1]  gauge invariance check independence of physical results on NLG parameters (3) : NLG parameters [1] J.Fujimoto et al., Phys.Rev.D75, 113002(’07)

Renormalization Scheme Electroweak (ELWK) corrections * On-Mass-Shell scheme  mass shifts for only * Sfermion sector  residue conditions, decoupling conditions, SU(2) relations for (4)

QCD/SUSYQCD corrections * light quarks(u,d,c,s) and gluon DR-bar scheme  PDF, parton-shower, … * massive quarks(b,t), squark and gluino On-Mass-Shell scheme * IR regularization… (Dimensional) (former version : fictitious mass of gluon, ) (5) (6)

3. MSSM parameters(SPS1a’) GUT scale input parameter

Possible decay modes sfermion (  because of ) gluino ( because of   )

4. Squark decay Main mode Fig.1: stop1 decay BR (tree)

Feynman diagrams(ELWK 1-loop) Details of (1) Feynman diagrams(ELWK 1-loop) 82 diagrams

OK Details of (2) : NLG parameters Independence of nonlinear gauge parameters (NLG) : NLG parameters unit : [GeV] Case 1 : (0,0,0,0,0,0,0) Ans = 0.15117115752797127186610833503954323 Case 2 : (1000,2000,3000,4000,5000,6000,7000) Ans = 0.15117115752797127186610833480863836 OK

Details of (3) Ultraviolet divergence is canceled? (Cuv part dependence) Case 1 : (Cuv=0) Ans = 0.15117115752797127186610833503954323 Case 2 : (Cuv=1000) Ans = 0.15117115752797127186596180279397801 unit : [GeV] OK Infrared divergence is canceled? ( dependence)  : fictitious photon mass -24 Case 1 : (=110 ) Ans = 0.15117115752797127186610833503954323 Case 2 : (=110 ) Ans = 0.15117115752797127186610833519983020 OK -27

(4) Details of ELWK corrections : Check of cancellation Born : 1.4326728 [GeV] Table1: check of cancellation (ELWK) unit : [GeV] Cuv 1000  kc loop -0.06256 -0.09364 soft 0.21373 0.24481 0.19301 hard 0.04849 0.06921 sum 0.19966 correction 13.9%

Feynman diagrams(QCD 1-loop) Details of (5) Feynman diagrams(QCD 1-loop) 4 diagrams

Details of (6) Table2: cancellation check of IR Infrared divergence is canceled? (Cir part dependence) Table2: cancellation check of IR unit : [GeV] Cir graph No. 1000 1 -1.8937129 -299.3588218 2 -0.1893653 3 -0.0064516 4 (counter term) 0.8352818 73.8007086 soft -3.7518778 220.7478043 sum -5.0061258 -5.0061259

Details of (7) QCD corrections : Check of cancellation Born : 1.4326728 [GeV] Table3: check of cancellation (QCD) unit : [GeV] Cuv 1 Cir kc loop -1.254 -1.479 soft -3.752 -3.527 -4.786 hard 4.905 5.939 sum -0.100 -0.099 correction -7.1% ※mass regularization () scheme : -7.1%

Summary of stop1 decay total decay width Table4: summary of stop1 decay unit : [GeV] tree  (QCD)  (ELWK) /tree(QCD) /tree(ELWK) total 1.43267 -0.104 0.200 -7.1% 13.9% 6.8% 0.22067 0.00461 0.01681 2.1% 7.6% 9.7% total decay width  (tree) : 1.65 [GeV]  (QCD) : 1.55 [GeV]  (ELWK) : 1.87 [GeV]  (1-loop) : 1.77 [GeV] Fig.2: stop1 decay BR (tree&1-loop)

3-body decay of light stop

Feynman diagrams (tree)

Feynman diagrams (QCD 1-loop)

QCD corrections : Check of cancellation Born : 6.63710-7 [GeV] Table5: check of cancellation (QCD) unit : [GeV]  10-24 10-27 kc 10-3 10-5 loop+soft (10-7) -4.289 -4.290 -7.174 hard (10-7) 5.251 8.135 sum (10-7) 0.962 0.963 correction 14.5% mass regularization () scheme

preliminary ~5% difference 2TeV difference Fig.3: gluino mass VS. 1-loop correction

5. Gluino decay SPS1a’ total decay width Table6: summary of gluino decay unit : [GeV] tree  (QCD)  (ELWK) /tree(QCD) /tree(ELWK) total 3.73207 -0.67035 0.09205 -18.0% 2.5% -15.5% 1.05812 -0.13785 0.01232 -13.0% 1.2% -16.8% preliminary total decay width  (tree) : 9.91 [GeV]  (QCD) : 8.95 [GeV]  (ELWK) : 10.09 [GeV]  (1-loop) : 9.12 [GeV] Fig.4: gluino decay BR (tree)

SPS1a’ total decay width Table6: summary of gluino decay tree total unit : [GeV] tree  (QCD)  (ELWK) /tree(QCD) /tree(ELWK) total 3.73207 -0.67035 0.09205 -18.0% 2.5% -15.5% 1.05812 -0.13785 0.01232 -13.0% 1.2% -16.8% preliminary total decay width  (tree) : 9.91 [GeV]  (QCD) : 8.95 [GeV]  (ELWK) : 10.09 [GeV]  (1-loop) : 9.12 [GeV] Fig.5: gluino decay BR (1-loop)

Comparison with reference[2] [2] W. Beenakker et al., “STOP DECAYS IN SUSY-QCD” Input parameter set: m0 = 400 GeV, A0 = 200 GeV,  > 0 Fig.6: gluino mass VS. decay width

6. Summary GRACE/SUSY upgrade QCD/SQCD correction … DR-bar scheme Physical processes 2-body & 3-body decays sfermion , gluino (chargino , neutralino )  calculated already J.Fujimoto et al., Phys.Rev.D75, 113002(’07) Future plan To extend the range for multi-body channels

Backup

References [1] J.Fujimoto, T.Ishikawa, M.Jimbo, T.Kon, Y.Kurihara, M.Kuroda, Phys.Rev.D75, 113002(’07) [2] W. Beenakker, R. Hopker, T. Plehn and P. M. Zerwas “STOP DECAYS IN SUSY-QCD” hep-ph/9610313v1, 10 Oct 1996 Z.Phys.C75:349-356,1997 ¨

Performance of computation: sample Case-1 : tree : Intel Core2(1.06GHz, 1.014GB) 2-body(tree) : less than 0.1[s] (one p.s. point) 3-body(photon radiation) : 3[s] per iteration (MC integral, Ncall = 100,000) Case-2: 1-loop : Intel Xeon E5430(2.66GHz, 4GB) From graph generation to making executable: < 1[m] Source code(Matrix Element) : 672 lines (FORTRAN) Executable module : 20[MB] 2-body(1-loop) : 0.5[s] (one p.s. point)

Comparison to reference[3] (stop1 decay) tree /tree(QCD) /tree(ELWK) treeBR (GHS) 1loopBR 0.209 -19.9% 3.0% 94.2% 94.2 93.7% 93.5% 3.401 -10.9% 1.7% 5.8% 6.3% 6.5% [3] Jaume Guasch, Wolfgang Hollik, Joan Sola “Fermionic decays of sfermions: a complete discussion at one-loop order” hep-ph/0207364v2, 3 Dec 2002

Physical result SPS1a’ Branching ratio(tree) : 9.25% Branching ratio(tree+QCDcorr.) : 9.67% Branching ratio(tree+ELWKcorr.) : 9.26% Branching ratio(tree+1loopcorr.) : 9.69%

Gluino decay BR (tree) light stop scenario total decay width  (tree) : 314.18 [GeV] Fig.7:gluino decay BR (tree)

Mass Shifts in SPS1a’ parameter set For Higgs : (7) For Neutralinos : (8) where : renormalized self-energy functions