Tracking parameter optimization

Slides:



Advertisements
Similar presentations
DDDAS: Stochastic Multicue Tracking of Objects with Many Degrees of Freedom PIs: D. Metaxas, A. Elgammal and V. Pavlovic Dept of CS, Rutgers University.
Advertisements

Tracking Learning Detection
Patch to the Future: Unsupervised Visual Prediction
Activity Recognition Aneeq Zia. Agenda What is activity recognition Typical methods used for action recognition “Evaluation of local spatio-temporal features.
2.Our Framework 2.1. Enforcing Temporal Consistency by Post Processing  Human Detection from Yang and Ramanan [1] Articulated Pose Estimation using Flexible.
Foundations & Core in Computer Vision: A System Perspective Ce Liu Microsoft Research New England.
On the use of hierarchical prediction structures for efficient summary generation of H.264/AVC bitstreams Luis Herranz, Jose´ M. Martı´nez Image Communication.
Event prediction CS 590v. Applications Video search Surveillance – Detecting suspicious activities – Illegally parked cars – Abandoned bags Intelligent.
Rutgers Components Phase 2 Principal investigators –Paul Kantor, PI; Design, modelling and analysis –Kwong Bor Ng, Co-PI - Fusion; Experimental design.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
ENTERFACE ’10 Amsterdam, July-August 2010 Hamdi Dibeklio ğ lu Ilkka Kosunen Marcos Ortega Albert Ali Salah Petr Zuzánek.
W M AM A I AI IM AIM Time (samples) Response (V) True rating Predicted rating  =0.94  =0.86 Irritation Pleasantness.
21 / 06 / 2000Segmentation of Sea-bed Images.1 Josepha UNIA Ecole Centrale de Lyon.
Agenda The Subspace Clustering Problem Computer Vision Applications
Learning and Recognizing Activities in Streams of Video Dinesh Govindaraju.
김덕주 (Duck Ju Kim). Problems What is the objective of content-based video analysis? Why supervised identification has limitation? Why should use integrated.
Prakash Chockalingam Clemson University Non-Rigid Multi-Modal Object Tracking Using Gaussian Mixture Models Committee Members Dr Stan Birchfield (chair)
Face Model Fitting with Generic, Group-specific, and Person- specific Objective Functions Chair for Image Understanding and Knowledge-based Systems Institute.
The Language Archive – Max Planck Institute for Psycholinguistics Nijmegen, The Netherlands Application of Audio and Video Processing Methods for Language.
EE 492 ENGINEERING PROJECT LIP TRACKING Yusuf Ziya Işık & Ashat Turlibayev Yusuf Ziya Işık & Ashat Turlibayev Advisor: Prof. Dr. Bülent Sankur Advisor:
Zhiphone: A Mobile Phone that Learns Context and User Preferences Jing Michelle Liu Raphael Hoffmann CSE567 class project, AUT/05.
SixthSense RFID based Enterprise Intelligence Lenin Ravindranath, Venkat Padmanabhan Interns: Piyush Agrawal (IITK), SriKrishna (BITS Pilani)
A Multimedia English Learning System Using HMMs to Improve Phonemic Awareness for English Learning Yen-Shou Lai, Hung-Hsu Tsai and Pao-Ta Yu Chun-Yu Chen.
Dan Rosenbaum Nir Muchtar Yoav Yosipovich Faculty member : Prof. Daniel LehmannIndustry Representative : Music Genome.
Computer Vision Lab Seoul National University Keyframe-Based Real-Time Camera Tracking Young Ki BAIK Vision seminar : Mar Computer Vision Lab.
Mentor: Salman Khokhar Action Recognition in Crowds Week 7.
ESR 2 / ER 2 Testing Campaign Review A. CrivellaroY. Verdie.
BAGGING ALGORITHM, ONLINE BOOSTING AND VISION Se – Hoon Park.
Prof. Thomas Sikora Technische Universität Berlin Communication Systems Group Thursday, 2 April 2009 Integration Activities in “Tools for Tag Generation“
Prototype 3: MI prototype for video surveillance and biometry CVDSP-UJI Computer Vision Group – UJI Digital Signal Processing Group – UV November 2010.
Review: Neural Network Control of Robot Manipulators; Frank L. Lewis; 1996.
The intelligence of the Social Network, first achievements on FIS A peculiar scientific problem B. Apolloni and team B. Apolloni, S. Bassis, GL Galliani,
Human Movement Summarization and Depiction from Videos Hao Jiang Boston College Yijuan Lu Texas State University.
Speaker Change Detection using Support Vector Machines V.Kartik, D.Srikrishna Satish and C.Chandra Sekhar Speech and Vision Laboratory Department of Computer.
Final Year Project. Project Title Kalman Tracking For Image Processing Applications.
Background 2 Outline 3 Scopus publications 4 Goal and a signal model 5Harmonic signal parameters estimation.
Quiz Week 8 Topical. Topical Quiz (Section 2) What is the difference between Computer Vision and Computer Graphics What is the difference between Computer.
Target Tracking In a Scene By Saurabh Mahajan Supervisor Dr. R. Srivastava B.E. Project.
Duo: Towards a Wearable System that Learns about Everyday Objects and Actions Charles C. Kemp MIT CSAIL ● Goal: help machines learn an important form of.
Configuration Management By Abokor and Alireza. The Overview of Configuration Management  Network Configuration is a process of organising and maintaining.
Strong Supervision From Weak Annotation Interactive Training of Deformable Part Models ICCV /05/23.
3D Motion Classification Partial Image Retrieval and Download Multimedia Project Multimedia and Network Lab, Department of Computer Science.
Week 3 Emily Hand UNR. Online Multiple Instance Learning The goal of MIL is to classify unseen bags, instances, by using the labeled bags as training.
Detecting Semantic Concepts In Consumer Videos Using Audio Junwei Liang, Qin Jin, Xixi He, Gang Yang, Jieping Xu, Xirong Li Multimedia Computing Lab,
3D Motion Classification Partial Image Retrieval and Download
Interactive Offline Tracking for Color Objects
Pixel DQM Status & Plans
Mentor: Afshin Dehghan
Vesa Klumpp, Knowtion Applications of Intelligent Control in Industry and Adaption to Space Missions Vesa Klumpp, Knowtion
Data Quality Monitoring of the CMS Silicon Strip Tracker Detector
Incremental Boosting Incremental Learning of Boosted Face Detector ICCV 2007 Unsupervised Incremental Learning for Improved Object Detection in a Video.
Project Implementation for ITCS4122
Video Summarization via Determinantal Point Processes (DPP)
V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis
Globally Optimal Generalized Maximum Multi Clique Problem (GMMCP) using Python code for Pedestrian Object Tracking By Beni Mulyana.
إستراتيجيات ونماذج التقويم
Homework Assignment 1: Use the following data set to test the performance difference of three clustering algorithms: K-means, AP clustering and Spectral.
Mentor: Salman Khokhar
Counting in High-Density Crowd Videos
network of simple neuron-like computing elements
An Improved Neural Network Algorithm for Classifying the Transmission Line Faults Slavko Vasilic Dr Mladen Kezunovic Texas A&M University.
Aline Martin ECE738 Project – Spring 2005
Approaching an ML Problem
ورود اطلاعات بصورت غيربرخط
EE 492 ENGINEERING PROJECT
AHED Automatic Human Emotion Detection
Segmentation of Sea-bed Images.
Image processing and computer vision pipeline for segmentation and cell detection. Image processing and computer vision pipeline for segmentation and cell.
REU Program 2019 Week 6 Alex Ruiz Jyoti Kini.
Presentation transcript:

Tracking parameter optimization Current context clusters Offline learning process Contextual features Training videos Contextual feature extraction Context segmentation & code-book modeling Clustering Contexts Context clustering New context clusters Temporary learned database Contexts Learned database Video chunks Context clusters Annotated objects Feedback Tracking parameter optimization Satisfactory parameters for contexts Satisfactory parameters for contexts Parameter computation for context clusters New satisfactory parameters for context clusters Current satisfactory parameters for context clusters Tracking algorithm Annotated trajectories Offline step Input of the learning process Database

Controlled tracking task Imavis 2012 Controlled tracking task Detected objects Object trajectories Object tracking Initial tracking parameters Adaptive tracker parameters Online control process Parameter adaptation Activation signal; Current context Video stream Context detection Parameter tuning Input/Output at each frame Context clusters; Satisfactory parameters Tracking parameters at the first frames Initial parameter configuration Learned database Data Online step

Controlled tracking task Detected objects Object tracking Object trajectories Object trajectories Video stream Initial parameters Satisfactory tracking parameters Online control process Current context Tracking quality alarm Output/Input at each frame Context computation Parameter tuning Online tracking evaluation Input of tracking process at the first frames Satisfactory tracking parameters Initial parameter configuration Online step Learned data base Data

Controlled tracking task Avss 13 Controlled tracking task Detected objects Object tracking Object trajectories Object trajectories Video stream Initial parameters Satisfactory tracking parameters Online control process Current context Tracking error alarm Output/Input at each frame Parameter tuning Context computation Online tracking evaluation Input of tracking process at the first frames Satisfactory tracking parameters Initial parameter configuration Online step Learned data base Data

Controlled tracking task Avss 13 Controlled tracking task Detected objects Object tracking Object trajectories Object trajectories Video stream Initial parameters Satisfactory tracking parameters Online control process Current context Tracking error alarm Output/Input at each frame Parameter tuning Context computation Online tracking evaluation Input of tracking process at the first frames Satisfactory tracking parameters Initial parameter configuration Online step Learned data base Data