Double beta decay and Majorana neutrinos

Slides:



Advertisements
Similar presentations
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Advertisements

Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Claudia Nones Physics of Massive Neutrinos - Blaubeuren, July 1 - 5, 2007 Status of Cuoricino and CUORE with some remarks on nuclear matrix elements Centre.
Double Beta Decay review
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
ANTI-NEUTRINOS- DIRAC OR MAJORANA
COBRA Kai Zuber University of Sussex 5 th SNOLAB Workshop,
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
LNGS Capelli Silvia on behalf of CUORE Collaboration
Contents Lecture 1 General introduction What is measured in DBD ? Neutrino oscillations and DBD Other BSM physics and DBD Nuclear matrix elements Lecture.
Double beta decay Ruben Saakyan UCL 25 March 2004.
Double Beta Decay Present and Future
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
From Cuoricino to CUORE: towards the inverted hierarchy region Andrea Giuliani On behalf of the CUORE collaboration University of Insubria (Como) and INFN.
Double beta decay search with TeO 2 bolometers Andrea Giuliani on behalf of the CUORE collaboration University of Insubria (Como) and INFN Milano-Bicocca.
Andrea Giuliani University of Insubria (Como) and INFN Milano-Bicocca Italy Searches for Neutrinoless Double Beta Decay Epiphany Conference Krakow 6 th.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Prospect of  experiment in Korea Presented by H.J.Kim Yonsei Univ., 10/25/2003 KPS 2003 fall meeting Contents 1) Introduction of 2) Theory and Experiments.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
The CUORE experiment Thomas Bloxham Lawrence Berkeley National Lab PHENO 2011 May 9th 2011.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Searches on neutrino physics with cryogenic detectors Ettore Fiorini, Columbia, May 16, 2008 The birth of the neutrino.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Position sensitive CZT detectors for the COBRA neutrinoless double beta decay project Brian Fulton University of York Neutrinoless double beta decay The.
Reactor neutrinos, double beta and beta decays Experimental review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3 and CEA/IRFU) and Centre.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
1 DOUBLE BETA DECAY Double beta decay at the borderline between nuclear and subnuclear physics (no border in my opinion) Nucleus acting as a microlaboratory.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
DOUBLE BETA DECAY EXPERIMENTS Yeongduk Kim Sejong University 2 nd Amore Meeting
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Probing neutrinos with  decay Ruben Saakyan UCLSwansea 31 January January 2006.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
ArchPbMoO4 scintillating bolometers as detectors to search for neutrinoless double beta decay of 100Mo Serge Nagorny INFN – Gran Sasso Science Institute,
The COBRA Experiment: Future Prospects
Experiments on Neutrino Nature and Mass
The search for neutrinoless double beta decay with Cuoricino and Cuore
Double Beta Decay - status and future
From Cuoricino to CUORE: approaching the inverted hierarchy region
Serge Nagorny – GSSI-INFN
Status of 100Mo based DBD experiment
Status and perspectives for Double Beta Decay measurements
Summary of the non-accelerator particle physics workshop session
of double beta decay experiments (outside of Japan)
Development of metal-loaded liquid scintillators
Fedor Danevich Institute for Nuclear Research Kyiv, Ukraine
The 0-neutrino double beta decay search
Institut de Physique Nucléaire Orsay, France
Search for Lepton-number Violating Processes
Some Comments to the Neutrinoless Double Beta-Decay
Presentation transcript:

Double beta decay and Majorana neutrinos Ettore Fiorini, Venice March 8, 2007 → → <= => Majorana =>1937 Presently an essential problem in neutrino and in astroparticle physiss

The most sensitive way to investigate the Dirac or Majorana nature of the neutrino is neutrinoless double beta decay (DBD) This very rare process was sugested in general form by Maria Goepper Mayer just one year after the Fermi theory of beta decay. Also Bruno Pontecorvo was deeply involved.

Double Beta –Disintegration M Double Beta –Disintegration M.Goeppert-Mayer, The John Hopkins University (Received May, 20 , 1935) From the Fermi theory of b- disintegration the probability of simultameous emission of two electrons (and two neutrinos) has been calculated. The result is that this process occurs sufficiently rarely to allow an half-life of over 1017 years for a nucleus, even if its isobar of atomic number different by 2 were more stable by 20 times the electron mass Double beta decay was at the beginning searched In the neutrinoless channel as a powerful way to search for lepton number non conservation. Presently it is also considered as the most powerful way to investigate the value of the mass of a Majorana neutrino

1. (A,Z) => (A,Z+2) + 2 e- + 2 ne¯ 2 1. (A,Z) => (A,Z+2) + 2 e- + 2 ne¯ 2. (A,Z) => (A,Z+2) + 2 e- + c ( …2,3 c) 3. (A,Z) => (A,Z+2) + 2 e- Process 1 has been detected in ten nuclei Process2 and 3. violate the lepton number Process 3, normally called neutrinoless DBD, would be revealed by the presence of a peak in the sum of the electron energies => <mn>≠ 0

Neutrinoless bb decay 0n - bb decay 2n - bb decay u e - d W n e - d u

1/t = G(Q,Z) |Mnucl|2 <mn>2 The rate of neutrinoless DBD strongly depends on the evaluation of the nuclear matrix elements, quite uncertain so far 1/t = G(Q,Z) |Mnucl|2 <mn>2 rate of DDB-0n Phase space Nuclear matrix elements EffectiveMajorana neutrino mass Need to search for neutrinoless DBD in various nuclei A pick could be due to some unforeseen background peak

Possible schemes for neutrino masses

New calculations by.S.Pascoli and S.T.Petkov

Experimental approaches Source = detector (calorimetric) Geochemical experiments i82Se = > 82Kr, 96Zr = > 96Mo (?) , 128Te = > 128Xe (non confirmed), 130Te = > 130Te Radiochemical experiments 238U = > 238Pu (non confirmed) e- Direct experiments Source = detector (calorimetric) Source  detector e- source detector Source  Detector

Cryogenic detectors heat bath Thermal sensor absorber crystal Incident particle absorber crystal

@ 2 MeV ~10 mk ~ 1 kg <10 eV ~ keV DE @ 5 keV ~100 mk ~ 1 mg <1 eV ~ 3 eV @ 2 MeV ~10 mk ~ 1 kg <10 eV ~ keV

Resolution of the 5x5x5 cm3 (~ 760 g ) crystals Energy [keV] Counts 210Po a line : 0.8 keV FWHM @ 46 keV 1.4 keV FWHM @ 0.351 MeV 2.1 keV FWHM @ 0.911 MeV 2.6 keV FWHM @ 2.615 MeV 3.2 keV FWHM @ 5.407 MeV (the best a spectrometer ever realized)

Present experimental situation Nucleus Experiment % Qbb Enr Technique T0n (y) <mn) 48Ca Elegant IV 0.19 4271 scintillator >1.4x1022 7-45 76Ge Heidelberg-Moscow 7.8 2039 87 ionization >1.9x1025 .12 - 1 IGEX Ionization >1.6x1025 .14 – 1.2 Klapdor et al 1.2x1025 .44 82Se NEMO 3 9.2 2995 97 tracking >1.x1023 1.8-4.9 100Mo 9.6 3034 95-99 >4.6x1023 .7-2.8 116Cd Solotvina 7.5 83 >1.7x1023 1.7 - ? 128Te Bernatovitz 34 2529 geochem >7.7  1024 .1-4 130Te Cuoricino 33.8 bolometric >2x1024 .16-.82. 136Xe DAMA 8.9 2476 69 >1.2x1024 1.1 -2.9 150Nd Irvine 5.6 3367 91 >1.2x1021 3 - ?

HM collaboration subset (KDHK): claim of evidence of 0n-DBD In December 2001, 4 authors (KDHK) of the HM collaboration announce the discovery of neutrinoless DBD t1/20n (y) = (0.8 – 18.3)  1025 y (1  1025 y b.v.) Mbb = 0.05 - 0.84 eV (95% c.l.) 54.98 kg•y 2.2 s 2001 71.7 kg•y 4 s 2004 skepticism in DBD community in 2001 better results in 2004

Two new experiments NEMO III and CUORICINO

 decay isotopes in NEMO-3 detector bb2n measurement 116Cd 405 g Qbb = 2805 keV 96Zr 9.4 g Qbb = 3350 keV 150Nd 37.0 g Qbb = 3367 keV 48Ca 7.0 g Qbb = 4272 keV 130Te 454 g Qbb = 2529 keV External bkg measurement 100Mo 6.914 kg Qbb = 3034 keV 82Se 0.932 kg Qbb = 2995 keV natTe 491 g Cu 621 g bb0n search

0n analysis 100Mo  t1/20n (y) > 4.6  1023 Mbb < 0.7 – 2.8 eV (90% c.l.) 82Se  t1/20n (y) > 1.0  1023 Mbb < 1.7 – 4.9 eV (90% c.l.)

CUORICINO

18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2 Search for the 2b|on in 130Te (Q=2529 keV) and other rare events At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS) 18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2 Operation started in the beginning of 2003 => ~ 4 months Background .18±.01 c /kev/ kg/ a 2 modules, 9 detector each, crystal dimension 3x3x6 cm3 crystal mass 330 g 9 x 2 x 0.33 = 5.94 kg of TeO2 11 modules, 4 detector each, crystal dimension 5x5x5 cm3 crystal mass 790 g 4 x 11 x 0.79 = 34.76 kg of TeO2

Present CUORICINO result (new) 60Co pile-up peak 130Te DBD Q-value anticoincidence spectrum 208Tl line Energy [keV] detail DBD MT = 5.87 (kg 130Te) x y b = 0.18  0.02 c/keV/kg/y (Jul 2005) 8.35 kg year of 130Te t >3 x 1024 (90 % c.l.) <m0n> < .16 - .9 eV => Klapdor et al m0n < .1- .9 eV

DBD and Neutrino Masses Present Cuoricino region Arnaboldi et al., submitted to PRL, hep-ex/0501034 (2005). Possible evidence (best value 0.39 eV) H.V. Klapdor-Kleingrothaus et al., Nucl.Instrum.and Meth. ,522, 367 (2004). With the same matrix elements the Cuoricino limit is 0.53 eV “quasi” degeneracy m1 m2  m3 Inverse hierarchy m212= m2atm Direct hierarchy m212= m2sol Cosmological disfavoured region (WMAP) Feruglio F. , Strumia A. , Vissani F. hep-ph/0201291

Next generation experiments Name % Qbb % E B c/y T (year) Tech <m> CUORE 130Te 34 2533 90 3.5 1.8x1027 Bolometric 9-57 GERDA 76Ge 7.8 2039 3.85 2x1027 Ionization 29-94 Majorana .6 4x1027 21-67 GENIUS .4 1x1028 13-42 Supernemo 82Se 8.7 2995 1 21026 Tracking 54-167 EXO 136Xe 8.9 2476 65 .55 1.3x1028 12-31 Moon-3 100Mo 9.6 3034 85 3.8 1.7x1027 13-48 DCBA-2 150Nd 5.6 3367 80 1x1026 16-22 Candles 48Ca .19 4271 - .35 3x1027 Scintillation 29-54 CARVEL 50-94 GSO 160Gd 22 1730 200 65-? COBRA 115Cd 7.5 2805 SNOLAB+

Ionization

Ionization COBRA

C0BRA Use large amount of CdZnTe Semiconductor Detectors Array of 1cm3 CdTe detectors K. Zuber, Phys. Lett. B 519,1 (2001)

Nd dissolved in SNO => tons of material; Scintillation 0n: 1000 events per year with 1% natural Nd-loaded liquid scintillator in SNO++ by Alex Wright simulation: one year of data maximum likelihood statistical test of the shape to extract 0n and 2n components…~240 units of Dc2 significance after only 1 year!

Scintillation

Tracking SUPERNEMO

Tracking

EXO concept: scale Gotthard experiment adding Ba tagging to suppress background (136Xe136Ba+2e) single Ba detected by optical spectroscopy two options with 63% enriched Xe High pressure Xe TPC LXe TPC + scintillation calorimetry + tracking expected bkg only by -2 energy resolution E = 2% Present R&D Ba+ spectroscopy in HP Xe / Ba+ extr. energy resolution in LXe (ion.+scint.) Prototype scale: 200 kg enriched L136Xe without tagging all EXO functionality except Ba id operate in WIPP for ~two years Protorype goals: Test all technical aspects of EXO (except Ba id) Measure 2n mode Set decent limit for 0n mode (probe Heidelberg- Moscow) 2P1/2 4D3/2 2S1/2 493 nm 650 nm metastable 47s LXe TPC Full scale experiment at WIPP or SNOLAB 10 t (for LXe ⇒ 3 m3) b = 4×10-3 c/keV/ton/y 1/2  1.3×1028 y in 5 years 〈m〉  0.013 ÷ 0.037 eV

CUORE expected sensitivity disfavoured by cosmology In 5 years: Strumia A. and Vissani F. hep-ph/0503246

Other possible candidates for neutrinoless DBD Compound Isotopic abundance Transition energy 48CaF2 .0187 % keV 76Ge 7.44 " 2038.7 " 100MoPbO4 9.63 " 3034 " 116CdWO4 7.49 " 2804 " 130TeO2 34 " 2528 " 150NdF3 150NdGaO3 5.64 " “ 130Te has high transition energy and 34% isotopic abundance => enrichment non needed and/or very cheap. Any future extensions are possible Performance of CUORE, amply tested with CUORICINO

How deep should we go?

Total Muon Flux v.s. Depth Relative to Flat Overburden (cm-2 s-1) Depth (km.w.e) Relative to Flat Overburden

Neutron Flux at Underground Sites

eg. Study for 60 kg Majorana Module

CONCLUSIONS Neutrino oscillations  Dm2 ≠0  <mn> finite for at leaqst one neutrino Neutrinoless double beta decay would indicate if neutrino is a lepton violating Majorana particle and would allow in this case to determine <mn> and the hierachy of oscillations. This process has been indicated by an experiment (Klapdor) with a value of ~0.44 eV but has not yet confirmed Future experiments on neutrinoless double beta decay will allow to reach the sensitivity predicted by oscillations The multidisciplinarity of searches on double beta decay involves nuclear and e subnuclear physics, astrophysics , radioactivity, material science, geochronology etc. It could help in explaining the particle-antiparticle asymmetry of the Universe