بِسْمِ اللّهِ الرَّحْمـنِ الرَّحِيمِ

Slides:



Advertisements
Similar presentations
Practical’s. Practical 1 Learning objectives: By the end of the lesson you should be able to State the similarities and differences between animal, plant.
Advertisements

University of Mauritius Doctoral Consortium Research Week An Assessment of the Potential of Locally Available Substrate Materials for the Cultivation.
RESULTS With increasing amounts of Novobiocin there was an obvious decrease in survival of colony forming units of bacteria (Fig. 8). Triclosan was more.
Surveillance of chloramphenicol residues in milk, eggs and chicken meat by LCMSMS.
Microbiology and Serology
Culture Media Lab 2:.
Selective and Differential media
PHT 226 Lab# 4 Culture media Streaking.
New York City Department of Environmental Protection Bureau of Water Supply Water Quality Bio-Stability of New York City’s Distribution Water Authors:
Eleonora Winkelhausen 1 Robert Pospiech 2 and Günther Laufenberg 2 1 Faculty of Technology and Metallurgy, University “Sts. Cyril and Methodius”, Rudjer.
PHT 416 Lab# 4 Culture mediaCulture media Streaking Streaking.
MYCOLOGY Lab no 8.
Contribution of Leaf-Surface Fungi to the Air Spora
Effect of feeding type on the occurrence of Aflatoxin M1 in cow milk of high producing Dairy cattle in Sri Lanka. G.S.SUMANASEKARA ASCEND RESEARCH NETWORK.
Effect of mycotoxins in the nutrition of farm animals secondary metabolites of fungi fungi start to produce them under stress conditions some of them are.
M. A. Tony 1, Wafaa A. Abd El-Ghany 2 and Samah H. Mohamed 3 1 Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University.
Estimation of the risk factors in chronic respiratory diseases of the children Cebanu Sergiu State Medical and Pharmaceutical University “Nicolae Testemitanu”
Mycoendophytic Diversity Associated with Ethanomedicinal plants Ficus pumila Linn and Mirabilis jalapa Linn. Mycoendophytic Diversity Associated with Ethanomedicinal.
Microbiology / Lab. 8. o Culture (Growth) Media I.What is a medium (plural media)? II.What is culture medium? III.What is meant by Inoculation of Media?
Laboratory diagnosis of fungi
Dalia Kamal Eldien Mohammed
Screening for Aflatoxin Resistance in Maize Tengan, K. Martin Luther Maize Improvement - CSIR-CRI.
Laboratory diagnosis of fungi
Microbiological Methods
Slide culture Dalia Kamal Eldien Practical NO(4).
Dr. Sarah Al Hamli Assistant Research Scientist Food and Nutrition program Environment & Life Science Research Centre Kuwait Institute for Scientific Research.
Understanding Biological Control of Aflatoxin Contamination of Corn K. Damann, LSU; B. Bluhm, U of A; T. Allen, MSU Report to the National Corn Growers.
Isolation of microorganisms
Identification of Bacteria
AFLATOXIN REGULATORY ISSUES
Detection of mycotoxins and mycotoxigenic fungi
EVALUATION OF MICROBIAL LOAD IN SUN-DRIED AND INDUSTRIALLY PACKAGED SILVER CYPRINIDS (Rastrineobola argentea) INSTITUTION LOGO Tieli, M., 1 Mwamburi, L.
CROP MYCOSIS (THRUSH, CANDIDIASIS)
Yeasts and Molds.
Eglė Lastauskienė, Auksė Zinkevičienė*, Donaldas Čitavičius
Heterogeneity of mycotoxin contamination of crops
For further information please contact:
Mycotoxins in Botanical Materials
GENERAL METHODS OF STUDYING
Good morning everyone. Welcome to my defense My Ph. D
Aflatoxins 50 years after: still unsolved challenge
Toxins and Poisons.
© The Author(s) Published by Science and Education Publishing.
aflatoxin growth and identification
Lab procedures when handling micro-organisms
GIT-block Microbiology Lab.
Increase in number of cells, not cell size Populations Colonies
Prof.Dr. Mohammed H.Khudor Prof.Dr.Basil A.Abbas
Mycotoxins Phreusa T
AN ALTERNATIVE TREATMENT WITH NIGELLA SATIVA EXTRACTS WITH A SYNERGICAL EFFECT WITH CLASSICAL THERAPY  Authors: Andrei Bita1, Alexandra Floriana Roşu2,
DETECTION OF AFLATOXINS FROM ANTIFUNGAL RESISTANT STRAINS IN ANIMAL TISSUES AND THEIR PRODUCTS
Microbial contamination of Ointments
Fungal Assessment by culture and RT-PCR assay in a Waste Sorting Plant
PRESENTATION ON MICROBIAL FOOD CONTAMINATION BY MR ABU GBLA.
Jaime Porter Biology 493 June 14, 2002
PATHOLOGICAL TOOLS AND TECHNIQUES. Clearing & preparation of glassware  Glassware are boiled in hot water before washing.  Sock the glassware in soap.
Oliver, O., Muthomi, J., Narla, R., Ojiem, J., Nderitu, J
Lab diagnosis of fungal infection
Introduction Many studies require the quantitative determination of bacterial populations. The two most widely used methods for determining bacterial.
Feed Additives Dr. Özge SIZMAZ University of Ankara Faculty of Veterinary Medicine Department of Animal Nutrition and Nutritional Diseases, Ankara, Turkey.
Clinical Microbiology and Infection
Microbial Detoxification of AFLATOXIN Presented by Mr. SANJAY KUMAR BHARIYA Assistant Professor Plant Molecular Biology and Biotechnology.
Lab procedures when handling micro-organisms
Clinical Microbiology and Infection
Media Preparation & Sterilization
Handling of Bacterial Cultures
Belén López-García, Phillip H. A. Lee, Kenshi Yamasaki, Richard L
Effect of mycotoxins in the nutrition of farm animals
Fig. 2. Allergogram of allergenic extracts of fungi vs pooled sera, high, medium and low specific IgE of selected patients under reducing and non-reducing.
DEPARTMENT OF PHARMACEUTICAL MICROBIOLOGY
Presentation transcript:

بِسْمِ اللّهِ الرَّحْمـنِ الرَّحِيمِ وَقُل رَّبِّ زِدْنِي عِلْمًا صدق الله العظيم

Rasha Mahmoud Hamza Sayed El-Ahl Cairo University Faculty of Veterinary Medicine Department of Microbiology STUDIES ON MYCOTOXINS-PRODUCING MOULDS IN ANIMALS AND POULTRY FEEDSTUFFS AND EVALUATION OF SOME COMMERCIAL ANTIFUNGALS By Rasha Mahmoud Hamza Sayed El-Ahl Under the Supervision of Prof. Dr. Mohamed Kamal Refai Professor of Microbiology Faculty of Veterinary Medicine Cairo University Prof.Dr.Atef Abdel Aziz Hassan Chief Researcher of Mycology and Mycotoxins – Animal Health Research Institute, Dokki ,Giza Prof. Dr. Hosam Ahmed Abdel-Latif Prof. of Feeding Faculty of Veterinary Medicine Cairo University 2005

INTRODUCTION

Up to date the dramatical increase in population in the world requires an efficient modern animal production industry and the manufacture of good quality feeds and food. This is necessary to give suitable growth performance of broilers, high egg production by layers and good quality meat and milk production from cattle for human consumption. This is in turn will contribute to the production of high quality food material for human consumption and the profitability of agricultural industry. Hence, great attention has been paid to the increased importance of fungi and their mycotoxins, which are serious fungal metabolites. These fungi and mycotoxins have serious effects upon the growth rate and health of human being and animals, as some mycotoxins had been found to be hepatotoxic, carcinogenic, tremorgenic, haemorrhagic and dermatitic.

AIM OF WORK

1. Screening single and compound feeds for fungal contamination. 2. Evaluation of the isolated Aspergillus flavus and Aspergillus ochraceus for production of respective mycotoxins. 3. Testing of some commercial fungal inhibitors and antimycotoxin for prevention and control of fungal growth and mycotoxins degradation.

MATERIALS AND METHODS

I- MATERIALS: 1. Feed samples. A total of 200 samples of feeds and feedstuffs were collected for investigation of fungal contamination and detection of aflatoxin and ochratoxin contamination. These samples included 20 of each of yellow corn, wheat, Soya bean, hay, tiben, layer’s concentrates, bone and blood meals, poultry ration, broiler’s concentrates and processed animal feed. 2. Standards of aflatoxins and ochratoxin A : Standards of aflatoxins B1, B2, G1 and G2 and ochratoxin A were purchased from Sigma Chemical Company (USA).

3. Media: 1. Sabouraud’s dextrose agar medium (SDA): (Cruickshank et al., 1975) 2. Czapek- Dox agar medium: (Al Doory, 1980) 3. Malt extract agar medium: (Cruikshank et al., 1975) 4. Fresh potato dextrose agar medium: (Shotwell et al., 1966) 5. Yeast extract sucrose liquid medium (Davis et al., 1969). 4. Chemicals and reagents: 1. Buffered peptone water (BPW): (Refai, 1979) 2. Phenol saline: 3. Other chemicals: 5. Stains: Lactophenol cotton blue stain: (Leanor and Callway, 1978) 6. Equipment, apparatus and glassware: 1. Thermostatic controlled water bath, rotary evaporator. 2. Thin layer chromatographic apparatus

2- METHODS: 1. Isolation and plate colony count of moulds: (Refai, 1979) 1.1. Preparation of sample homogenate. 1.2. Dilution. 1.3. Plate pouring. 1.4. Incubation and reporting. 2. Mould identification: - Macroscopic examination: - Microscopic examination: - Direct microscopic examination: - Slide culture technique (Ajello et al., 1963) 3.1. Screening of Aspergillus flavus for productions of aflatoxin using liquid medium (Gabal et al., 1994): - Cultivation and extraction of aflatoxins: 3.2. Estimation of aflatoxin (Lee, 1975): - Qualitative estimation: - Quantitative estimation of aflatoxin :

4. Production of ochratoxin A by A 4. Production of ochratoxin A by A. ochraceus using liquid medium (Davis et al., 1969) 1 Extraction of ochratoxin A from liquid medium (Walbeek et al., 1968; Davis et al., 1969) 2. Purification of the acidified chloroform from liquid medium: (Vender Merwe et al., 1965 and Nessheim, 1969) 3. Qualitative determination of the prepared ochratoxin (Vender Merwe et al., 1965 and Scott and Hand, 1967) 4. Quantitative estimation of the prepared ochratoxin: (Vander Merwe et al., 1965) 5. Control of A. ochraceus and A. flavus growth by 2 commercial antifungal compounds (muv-anti mould and mycostatine) using plate count assay (Chen and Day, 1974) - Maintaining of culture. - Determination of inhibitory concentration. - Incubation of plates.

- Colony count of fungi in commercial poultry feeds: 1. Type A Toxin: produced an irregular area of yellowish necrosis. The lesions tend to spread downwards (Alpha toxin). 2. Type B Toxin: produced a purplish yellow haemorrhagic necrosis (Beta toxin). 3. Type C Toxin: produced a reaction intensively bluer than that produced by type B. 4. Type D Toxin: produced a circular white necrosis that was fuiiy developed in 24 hours (Epsilon toxin). Sometimes it showed a few small areas of purplish haemorrhagic mottling. - Evaluation of Muv- anti mould in inhibition of fungal growth in poultry feeds: - Colony count of fungi in commercial poultry feeds: - Detection of inhibitory concentration of Muv- anti mould: - Degradation of mycotoxins (aflatoxin B1 and ochratoxin A) by hydrated sodium calcium aluminosilicate (HSCAS) compound (Harvey et al. (1991).

RESULTS

Table (1): Prevalence of main fungal species in single feeds. Wheat Hay Tiben Soya bean Yellow corn Isolates % No. +ve 100 20 Aspergillus spp. 80 16 90 18 70 14 30 6 Penicillium spp. 4 60 12 40 8 – 50 10 Fusarium spp. Mucor spp. Rhizopus spp. C. albicans Rhodotorula Cladosporium 15 3 Alternaria Curvularia Scopulariopsis Chaetomium glabosum

Fig. (1): Prevalence of main fungal species in single feeds. % Fig. (1): Prevalence of main fungal species in single feeds.

Table (2): Prevalence of members of Aspergillus, Fusarium and Penicillium species in single feeds. Total Tiben Hay Wheat Soya bean Yellow corn Isolates No. % No. +ve 225 100 20 Aspergillus sp. 25 – 4 15 3 30 6 60 12 A. candidus 21 50 10 40 8 A. fumigatus 64 80 16 A. flavus 70 14 90 18 A. niger 13 A. ochraceus A. parasiticus A. terreus 68 Penicillium sp. 11 14.28 2 31.25 5 14.2 33.3 P. chrysogenum 7 7.14 1 16.6 P. digitatum P. funicolosum 18.75 P. oryzee 12.5 P. sclerotigenum 57.1 9 37.5 35.7 P. thomii P. viridicatum P. vercossum (P. crustosum) Fusarium sp. F. oxysporium F. solani F. tabacinum F. tricinactum (F. latiratum) F. violacium 314

Broiler’s concentrate Table (3): Prevalence of main fungal species in compound feeds. Broiler’s concentrate Layer’s concentrate Processed animal feed Poultry ration Bone and blood meal Isolates % No. +ve 100 20 90 18 Aspergillus spp. 70 14 80 16 50 10 Penicillium spp. 4 15 3 – Fusarium spp. 60 12 Mucor spp. 40 8 30 6 Rhizopus spp. C. albicans Rhodotorula Cladosporium Scopulariopsis

Fig. (2): Prevalence of main fungal species in compound feeds % Fig. (2): Prevalence of main fungal species in compound feeds

Broiler’s concentrate Table (4): Prevalence of members of Aspergillus, Fusarium and Penicillium species in compound feeds. Total no. of isolates Broiler’s concentrate Layer’s concentrate Processed animal feed Poultry ration Bone and meat meals. Isolates % No. +ve 188 100 20 90 18 Aspergillus sp. 22 4 40 8 30 6 - A. candidus 68 80 16 60 12 A. flavus 10 A. fumigatus 3 15 – A. glaucus 56 70 14 50 A. niger A. parasiticus A. ochraceus 28 A. terrus 63 13 Penicillium sp. 5 7.1 1 6.25 21.4 P. citreoviride 25 14.28 2 P. chrysogenum 28.75 28.57 14.2 P. digitatum P. funiculosum P.purpurogenum 35.7 P. restrictum 12.5 P. thomii P. viridicatum Fusarium sp. F. moniliform F. oxisporium F. solani F. tabacium F. tricinatum (F.latitum) 265

Fig. (3): Macroscopical feature of A. flavus.

Fig. (4): Microscopical structure of A Fig. (4): Microscopical structure of A. Flavus showing globose vesicle and the streigmate over almost the entire surface and conidophore .

Fig. (5): Macroscopical feature of A. niger

Fig. (6): Microscopical feature of A. niger .

Fig. (7): Macroscopical feature of A. ochraceus

Fig. (8): Microscopical feature of A. ochraceus

Fig. (9): Macroscopical feature of C. albicans

Fig. (10): Microscopical feature of C. albicans

Fig. (11): Macroscopical feature of Rhodotorula species

Fig. (12): Microscopical feature of Rhodotorula species

Fig. (13): 10 days old culture of Mucor species on S.D.A. at 25°C

Fig. (14): Microscopical feature of Mucor species

Fig. (15): S.D. slant contaning Fusarium species; the colony is cottony or wolly with a delicate lavender, rose colour

Fig. (16): Microscopical appearance of Fusarium species

Fig. (17): Macroscopical feature of Penicillium species colony an S. D Fig. (17): Macroscopical feature of Penicillium species colony an S.D.A, 7days, 25°C

Fig. (18): Microscopical structure of Penicillium: condiophore head were symmetrical branches consisting of serigmate and metulae. Conidia were globose.

Table (6): Colony count of fungi in soya bean. SE Mean Min. Max. % No. +ve 0.025 0.84 x 102 0.2 x 102 1.8 x 102 100 20 Total colony count 0.033 1.8 x 101 0.5 x 101 3 x 101 T. Aspergillus spp. 0.037 1.68 x 101 80 16 A. flavus 0.046 1.88 x 101 2.5 x 101 90 18 A. niger 0.011 30 6 A. candidus 0.054 1.37 x 101 1 x 101 2 x 101 40 8 A. terreus 0.013 0.44 x 101 0.56 x 101 A. fumigatus 1.64 x 101 70 14 Penicillium spp. 0.032 0.91 x 101 1.6 x 101 4 Mucor spp. 0.014 Rhizopus spp. 0.018 0.45 x 101 0.53 x 101 Cladosporium spp. 0.035 15 3 Alternaria spp. 0.43 x 101 0.54 x 101 Scopulariopsis spp.

Table (7): Colony count of fungi in wheat. SE Mean Min. Max. % No. +ve 0.0095 0.33 x 102 0.1 x 102 0.85 x 102 100 20 Total colony count 0.028 1.1 x 101 0.5 x 101 2 x 101 T. Aspergillus spp. 0.025 1 x 101 70 14 A. niger 0.049 0.41 x 101 0.58 x 101 15 3 A. candidus 0.016 0.7 x 101 50 10 A. fumigatus 0.024 0.93 x 101 1.5 x 101 80 16 Penicillium spp. 0.043 0.39 x 101 0.6 x 101 4 Fusarium spp. 0.042 0.75 x 101 Mucor spp. 40 8 Rhizopus spp 0.42 x 101 0.54 x 101 Cladosporium spp. 0.032 0.44 x 101 0.55 x 101 Alternaria spp.

Table (8): Colony count of fungi in hay. SE Mean Min. Max. % No. +ve 0.057 2.28 x 102 0.95 x 102 4 x 102 100 20 Total colony count 0.05 1.9 x 101 1 x 101 4 x 101 T. Aspergillus spp. 0.04 A. flavus 0.055 2.4 x 101 A. niger 0.02 0.75 x 101 0.5 x 101 4 A. ochraceus 0.172 2 x 101 1.5 x 101 A. candidus 0.03 0.93 x 101 A. terreus 0.056 0.84 x 101 1.09 x 101 A. parasiticus 0.063 2.6 x 101 90 18 Penicillium spp. 0.08 3 x 101 70 14 Fusarium spp. 1.07 x 101 15 3 Mucor spp. 0.039 2.5 x 101 Cladosporium spp. 0.037 1.4 x 101 60 12 Alternaria spp. 0.071 Curvularia spp.

Table (9): Colony count of fungi in tiben. SE Mean Min. Max. % No. +ve 0.009 2.03 x 102 0.9 x 102 3.2 x 102 100 20 Total colony count 0.05 2.27 x 101 0.5 x 101 4.5 x 101 T. Aspergillus spp. 0.055 2.62 x 101 1 x 101 4 x 101 80 16 A. flavus 0.029 0.95 x 101 1.05 x 101 15 3 A. fumigatus 0.06 2.5 x 101 A. niger 0.021 0.83 x 101 30 6 A. ochraceus 0.056 70 14 Penicillium spp. 0.038 1.62 x 101 40 8 Fusarium spp. 0.035 4 Cladosporium spp. 0.013 1.28 x 101 Alternaria spp. 0.019 1.75 x 101 1.5 x 101 2 x 101 C. albicans 0.156 Rhodotoruella

Table (10): Colony count of fungi in processed animal feeds . Mean Min. Max. % No. + ve 0.0043 1.12 x 102 0.12 x 102 3.3 x 102 100 20 Total colony count 0.043 1.15 x 101 0.5 x 101 1.5 x 101 90 18 T. Aspergillus spp. 0.02 0.87 x 101 40 8 A. flavus 0.026 0.66 x 101 1 x 101 30 6 A. niger 0.019 0.75 x 101 4 A. ochraceus A. candidus 0.021 0.97 x 101 1.06 x 101 A. terreus 0.023 0.43 x 101 0.53 x 101 A. parasiticus 0.04 0.57 x 101 15 3 A. glucaus 0.121 2.7 x 101 6 x 101 70 14 Penicillium 0.108 2.4 x 101 3.5 x 101 60 12 Mucor 0.162 3.6 x 101 Rhizopus 0.074 1.29 x 101 1.62 x 101 Cladosporium 0.017 0.45 x 101 Scopulariopsis 0.202 3.1 x 101 3.8 x 101 C. albicans 0.072 1.6 x 101 5 x 101 50 10 Rhodoturella

Colony count of fungi Fungi Table (11): Colony count of fungi in broiler’s concentrate. Colony count of fungi Fungi SE Mean Min. Max. % No. + ve 0.003 1.19 x 102 0.2 x 102 1.8 x 102 100 20 Total colony count 0.05 2.15 x 101 0.5 x 101 3 x 101 T. Aspergillus spp. 0.028 1.25 x 101 2.5 x 101 80 16 A. flavus 0.073 1.85 x 101 1 x 101 70 14 A. niger 0.049 0.41 x 101 0.58 x 101 15 3 A. ochraceus 0.009 0.44 x 101 0.54 x 101 4 A. candidus 0.011 0.47 x 101 0.53 x 101 A. terreus 0.45 1.14 x 101 2 x 101 Penicillium spp. 0.47x 101 Fusarium spp. 0.065 1.44 x 101 90 18 Mucor spp. 0.051 1.12 x 101 40 8 Rhizopus spp. 0.013 0.46 x 101 Cladosporium spp.

SE Mean Min. Max. % No. + ve Colony count of fungi Fungi Table (12): Colony count of fungi in poultry rations. Colony count of fungi Fungi SE Mean Min. Max. % No. + ve 0.003 1.55 x 102 0.1 x 102 3.1 x 102 100 20 Total colony count 0.063 2.95 x 101 0.5 x 101 3 x 101 T. Aspergillus spp. 0.042 1.9 x 101 A. flavus 0.033 1.3 x 101 2 x 101 50 10 A. niger 0.028 0.45 x 101 0.54 x 101 15 3 A. ochraceus 0.013 0.44 x 101 0.56 x 101 30 6 A. candidus 0.02 0.36 x 101 0.58 x 101 40 8 A. terreus 0.025 0.55 x 101 4 A. fumigatus 0.034 1.42 x 101 2.5 x 101 70 14 Penicillium spp. 0.038 1.5 x 101 Fusarium spp. 0.03 0.9 x 101 Mucor spp. 0.032 1.25 x 101 1 x 101 Rhizopus spp. 0.015 Cladosporium spp. 0.022 0.4 x 101 0.65 x 101 Scopulariopsis spp.

Table (13): Colony count of fungi in layer’s concentrate. SE Mean Min. Max. % No. +ve 0.003 1.39 x 102 0.75 x 102 2.15 x 102 100 20 Total colony count 0.03 1.37 x 101 0.5 x 101 2.5 x 101 90 18 T. Aspergillus spp. 0.039 1.75 x 101 60 12 A. flavus 0.07 1.78 x 101 70 14 A. niger 0.029 0.75 x 101 1 x 101 4 A. ochraceus 0.031 0.43 x 101 0.55 x 101 A. candidus 0.1 A. terreus 0.069 3.5 x 101 80 16 Penicillium 0.038 0.43x 101 0.53 x 101 15 3 Fusarium 0.059 1.31 x 101 2 x 101 Mucor 0.045 1.5 x 101 30 6 Rhizopus 0.017 0.45 x 101 Scopulariopsis

Colony count of fungi Fungi SE Mean Min. Max. % No. +ve 0.002 Table (14): Colony count of fungi in bone and meat meals. Colony count of fungi Fungi SE Mean Min. Max. % No. +ve 0.002 1.08 x 102 0.35 x 102 2.2 x 102 100 20 Total colony count 0.055 2.5 x 101 0.5 x 101 3 x 101 90 18 T. Aspergillus spp. 0.019 0.83 x 101 2 x 101 60 12 A. flavus 0.033 A. niger 0.029 0.75 x 101 1.5 x 101 40 8 A. terrus 0.045 0.35 x 101 0.61 x 101 4 A. fumigatus 0.067 1.7 x 101 50 10 Penicillium 0.09 4 x 101 80 16 Mucor 0.34 1 x 101 Rhizopus 0.011 0.5 x 10 0.48 x 101 0.53 x 101 Cladosporium

Table (15): Aflatoxin production by A. flavus isolated from feeds. Levels of aflatoxin B1 (ppm) Toxigenicity of isolates Incidence of isolates Source of A. flavus Mean Min. Max. % No. of –ve isolates No. of +ve isolates Mean of count No. of +ve samples No. of tested samples 0.6 0.4 0.8 16.6 10 2 3.9 x101 ±0.0124 60 12 20 Yellow corn 3.0 2.0 4.0 12.5 14 1.68 x101 ±0.037 80 16 Soya bean 2.3 40 8 1.9 x101 ±0.04 100 Hay 1.2 25 4 2.62 x101 ±0.055 Tiben 1.1 0.2 1.25 x101 ±0.028 Broiler’s conc. 0.625 0.05 18 1.9 x101 ±0.042 Poultry ration 4.1 6.0 50 6 1.75 x10 1 ±0.039 Layer’s conc. 33.3 0.83 x101 ±0.019 Bone and meat meals 13.725 4.05 21.1 25.8 92 32 1.58 x102 ±0.27 77.5 124 160 Total

Levels of ochratoxin (ppm) Toxigenicity of isolates Table (16): Ochratoxin production by A. ochraceus isolated from feeds. Levels of ochratoxin (ppm) Toxigenicity of isolates Incidence of isolates Source of A. ochraceus Mean Min. Max. % No. of-ve isolates No. of +ve isolates Mean of count No. of +ve samples No. of tested samples 0.400 33.3 2 1 1 x 101 ±0.069 15 3 20 Yellow corn 0.800 25 0.75 x101 ±0.02 4 Hay 1.200 0.83 x101 ±0.021 30 6 Tiben 0.300 0.200 50 0.75 x101 ±0.019 Processed animal feeds 0.050 0.5 x101 ±0.049 Broiler’s conc. 0.500 66.6 0.5 x101 ±0.028 Poultry ration 0.75 x101 ±0.029 Layer’s conc. 4.05 2.85 4.85 37 17 10 0.4 x101 ±0.234 19.2 27 140 Total

MIC range of tested drug (µg/ml) Table (17): MIC of muv-anti mould on A. flavus. MIC range of tested drug (µg/ml) No. of tested isolats Source of isolates 5.0 4.0 3.0 2.0 1 0.75 0.5 0.25 0.125 0.06 0.03 0.02 0.01 0.1×101 0.2×101 1×10² 2×10³ 0.5×104 2×104 5×105 5 Yellow corn 1×101 5×10² 8×104 6×105 7×105 6 Poultry ration 0.5×101 7×10² 3×10³ 4×10³ 1×104 Layer’s conc. 2×101 8×10³ 6×104 3×105 4×105 4 Broiler’s conc. 4×101 2×10² 5×104 9×105 9 Hay 6×10² 1×105 8×105 10 Tiben 9×101 8×10² 7×10³ 3 Processed animal feed 3×101 4×10² 6×10³ 4×104 2×105 Bone and meat meal 0: No growth of fungal isolate  this conc. of inhibitor could inhibit fungal growth.

MIC range of tested drug (µg/ml) Table (18): MIC of muv-anti mould on A. ochraceus. MIC range of tested drug (µg/ml) No. of tested isolates Source of isolates 5.0 4.0 3.0 2.0 1.0 0.75 0.5 0.25 0.125 0.06 0.03 0.02 0.01 3×101 5×10² 6×10² 2×10³ 1×104 6×104 4×105 2 Yellow corn 7×101 8×10² 9×10² 5×10³ 3×104 1×105 Poultry ration 8×101 7×10² 4×10³ 4 Layer’s conc. 1×101 3×10² 6×10³ 8×10³ 2×105 Broiler’s conc. 4×10² 7×10³ Hay 5×101 9×101 2×104 6 Tiben 7×104 8×104 6×105 3 Processed animal feed 0 : No growth of fungal isolate  this conc. of inhibitor could inhibit fungal growth

MIC range of tested drug units) Table (19): MIC of mycostatine on A. flavus. MIC range of tested drug units) No. of tested isolates Source of isolates 5.0 4.0 3.0 2.0 1.0 0.75 0.5 0.25 0.125 0.06 0.03 0.02 0.01 8×101 9×101 5×10² 2×10³ 1×104 7×104 8×104 7×105 5 Yellow corn 3×10² 8×10² 1×10³ 5×104 6×104 2×105 8 Poultry ration 2×10² 6×10² 5×10³ 2×104 2 Layer’s conc. 7×101 9×10³ 8×10³ 4×105 4 Broiler’s conc. 1×101 9×104 6×105 9 Hay 6×101 2×102 9×102 7×10³ 3×104 1×105 10 Tiben 4×10³ 6×10³ 3 Processed animal feed 3×101 5×101 9×10² Bone and meat meal 0 : No growth of fungal isolate  this conc. of inhibitor could inhibit fungal growth.

MIC range of tested drug (units/ml) Table (20): MIC of mycostatine on A. ochraceus. MIC range of tested drug (units/ml) No. of tested isolates Source of isolates 5.0 4.0 3.0 2.0 1.0 0.75 0.5 0.25 0.125 0.06 0.03 0.02 0.01 6×101 5×101 2×10² 1×10³ 4×10³ 2×105 6×105 8×105 2 Yellow corn 8×101 5×10² 7×10³ 8×104 3×104 6×104 1×105 4×105 Poultry ration 7×101 6×10² 4×10² 6×103 9×104 3×105 4 Layer’s conc. 3×101 9×10² 8×10³ Broiler’s conc. 6×10³ 3 Processed animal feed 9×101 7×102 5×102 3×10² 2×104 1×104 Hay 9×10³ 4×104 6 Tiben 0 : No growth of fungal isolate  this conc. of inhibitor could inhibit fungal growth.

Table (21): The mould growth on poultry feeds before adding Muv-anti mould. Poultry’s ration Isolates Total 10 9 8 7 6 5 4 3 2 1 5.2x102 7x101 4x101 2x101 6x101 8x101 Aspergillus 1x101 C.albicans 1.6x102 3x101 5x101 Fusarium 4.8x102 Mucor 2.8x102 Penicillium 2x10 Rhodotorulla 1.7x102 1.2x102 1.3x102 1.8x102 1.4x102 2.1x102 2.2x102 1.1x102

Table (22): The effect of Muv-antimould on colony of mould growth after adding to poultry feeds by 2 days. Poultry ration Isolates Total 10 9 8 7 6 5 4 3 2 1 1.2x102 1x101 2x101 Aspergillus C.albicans 4x101 Fusarium 2.0x102 3x101 Mucor 2.0x101 Penicillium Rhodotorulla 8x101 5x101

Poultry’s ration samples Table (23): Effect of Muv-anti mould after adding to poultry feeds by one week. Poultry’s ration samples Isolates Total 10 9 8 7 6 5 4 3 2 1 Aspergillus C.albicans Fusarium Mucor Penicillium Rhodotorulla

Concentration of chemical /% of Detoxification Table (24) Detoxification of Aflatoxim B1, in poultry and animals feeds by Sat.F. Dray (commercial compound) (HSCAS). Concentration of chemical /% of Detoxification feed 8% 6% 5% 4% 3% 2% 1% 0.5% 0.25% 0% %D At 100 90 5±0.0 48 26±0.01 24 38±0.1 10 45±1.0 50 Poultry feeds 85 7.5±0.2 60 20±0.5 38 31±0.7 Animal feeds A.T= original amounts of toxin before treatment = 50ppb. %D= % of Detoxification HSCAS = Hydrated Sodium Calcium Aluminosilicate.

Concentration of chemical / % of Detoxification Table (25) Detoxification of Ochratoxin A in poultry and animals feeds by Sat. F. Dry (a commercial compound) (HSCAS). Concentration of chemical / % of Detoxification feed 8% 6% 5.0% 4.0% 3.0% 2.0% 1.0% 0.5% 0.25% 0% %D At 100 84 8±0.8 54 23±0.2 40 30±0.5 26 37±1.0 50 Poultry feeds 94 3±0.0 60 20±0.01 32 34±0.3 20 40±0.8 Animal feeds A.T= original amounts of toxin before treatment = 50ppb. %D= % of Detoxification HSCAS = Hydrated Sodium Calcium Aluminosilicate.

CONCLUSIONS

From the foregoing results its is apparent that 1. The mycoflora of the single feeds is more higher than compound feeds. This may be due to the single feeds were subjected to processes help in their contamination as bad irrigation, cultivation, harvesting, handling and storage condition. While the compound feeds subjected to heat treatment, additives and processing during preparation. These factors may decrease nycoflora of compound feeds. 2. The use of fungal inhibitors and antimycotoxins in addition to proper storage condition provided an effective ways of controlling the growth of fungi and subsequently toxin production.

3. The treated feeds must be remained a time not less than 1 week before used by animal or poultry. Therefore, frequent testing programs of feed and feedstuffs during different steps of production must be monitored before given to animal for consumption. All this way for increasing the quality of human health and animals wealth.

THANK YOU