Recurrent De Novo Mutations in PACS1 Cause Defective Cranial-Neural-Crest Migration and Define a Recognizable Intellectual-Disability Syndrome  Janneke H.M.

Slides:



Advertisements
Similar presentations
Mutations in DDHD2, Encoding an Intracellular Phospholipase A1, Cause a Recessive Form of Complex Hereditary Spastic Paraplegia Janneke H.M. Schuurs-Hoeijmakers,
Advertisements

Disruption of an EHMT1-Associated Chromatin-Modification Module Causes Intellectual Disability Tjitske Kleefstra, Jamie M. Kramer, Kornelia Neveling, Marjolein.
Mutations in MED12 Cause X-Linked Ohdo Syndrome Anneke T. Vulto-van Silfhout, Bert B.A. de Vries, Bregje W.M. van Bon, Alexander Hoischen, Martina Ruiterkamp-Versteeg,
Volume 21, Issue 16, Pages (August 2011)
A Mutation in the 5′-UTR of IFITM5 Creates an In-Frame Start Codon and Causes Autosomal-Dominant Osteogenesis Imperfecta Type V with Hyperplastic Callus 
Tjitske Kleefstra, Jamie M. Kramer, Kornelia Neveling, Marjolein H
Ilse Feenstra, Lisenka E. L. M. Vissers, Ronald J. E
Volume 36, Issue 5, Pages (December 2009)
Mutations in AGBL1 Cause Dominant Late-Onset Fuchs Corneal Dystrophy and Alter Protein-Protein Interaction with TCF4  S. Amer Riazuddin, Shivakumar Vasanth,
The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction  D.G. Fuster, J. Zhang, X.-S. Xie, O.W. Moe 
NR2F1 Mutations Cause Optic Atrophy with Intellectual Disability
Volume 5, Issue 4, Pages (April 2004)
Volume 70, Issue 7, Pages (October 2006)
Volume 13, Issue 3, Pages (October 2015)
Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis  Francesca Mattioli,
Volume 87, Issue 7, Pages (December 1996)
Volume 15, Issue 6, Pages (March 2005)
TBC1D24, an ARF6-Interacting Protein, Is Mutated in Familial Infantile Myoclonic Epilepsy  Antonio Falace, Fabia Filipello, Veronica La Padula, Nicola.
Yu-Hsin Chiu, Jennifer Y. Lee, Lewis C. Cantley  Molecular Cell 
SCRIB and PUF60 Are Primary Drivers of the Multisystemic Phenotypes of the 8q24.3 Copy-Number Variant  Andrew Dauber, Christelle Golzio, Cécile Guenot,
Exome Sequencing Identifies a Recurrent De Novo ZSWIM6 Mutation Associated with Acromelic Frontonasal Dysostosis  Joshua D. Smith, Anne V. Hing, Christine M.
Volume 19, Issue 2, Pages (August 2010)
De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms  Karin Weiss,
Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems  Anneke T. Vulto-van Silfhout,
Volume 7, Issue 6, Pages (December 2004)
De Novo Mutations in MLL Cause Wiedemann-Steiner Syndrome
Ras Enhances Myc Protein Stability
Mutations in Multidomain Protein MEGF8 Identify a Carpenter Syndrome Subtype Associated with Defective Lateralization  Stephen R.F. Twigg, Deborah Lloyd,
Mutations in Either TUBB or MAPRE2 Cause Circumferential Skin Creases Kunze Type  Mala Isrie, Martin Breuss, Guoling Tian, Andi Harley Hansen, Francesca.
MUC1 Oncoprotein Stabilizes and Activates Estrogen Receptor α
The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance  Alexandra Neuhaus-Follini, Greg J.
DVL1 Frameshift Mutations Clustering in the Penultimate Exon Cause Autosomal- Dominant Robinow Syndrome  Janson White, Juliana F. Mazzeu, Alexander Hoischen,
Volume 18, Issue 4, Pages (May 2005)
De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome  Sandra Jansen, Sinje Geuer, Rolph Pfundt,
RBPJ Mutations Identified in Two Families Affected by Adams-Oliver Syndrome  Susan J. Hassed, Graham B. Wiley, Shaofeng Wang, Ji-Yun Lee, Shibo Li, Weihong.
Christian Gilissen, Heleen H
Cantú Syndrome Is Caused by Mutations in ABCC9
Aicardi-Goutières Syndrome Is Caused by IFIH1 Mutations
MUC1 Oncoprotein Stabilizes and Activates Estrogen Receptor α
Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination  Tojo Nakayama, Almundher Al-Maawali, Malak El-Quessny,
The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria  Jennifer J. Johnston, Andrea L. Gropman,
Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability  Asbjørg Stray-Pedersen,
Mutations in MED12 Cause X-Linked Ohdo Syndrome
Mutations in ANKRD11 Cause KBG Syndrome, Characterized by Intellectual Disability, Skeletal Malformations, and Macrodontia  Asli Sirmaci, Michail Spiliopoulos,
Volume 92, Issue 5, Pages (December 2016)
Dominant Mutations in KAT6A Cause Intellectual Disability with Recognizable Syndromic Features  Emma Tham, Anna Lindstrand, Avni Santani, Helena Malmgren,
Mutations in DVL1 Cause an Osteosclerotic Form of Robinow Syndrome
TBC1D24, an ARF6-Interacting Protein, Is Mutated in Familial Infantile Myoclonic Epilepsy  Antonio Falace, Fabia Filipello, Veronica La Padula, Nicola.
Zebrafish pea3 and erm are general targets of FGF8 signaling
The Actin-Bundling Protein Palladin Is an Akt1-Specific Substrate that Regulates Breast Cancer Cell Migration  Y. Rebecca Chin, Alex Toker  Molecular.
De Novo Mutations of the Gene Encoding the Histone Acetyltransferase KAT6B Cause Genitopatellar Syndrome  Michael A. Simpson, Charu Deshpande, Dimitra.
Yi Tang, Jianyuan Luo, Wenzhu Zhang, Wei Gu  Molecular Cell 
DVL3 Alleles Resulting in a −1 Frameshift of the Last Exon Mediate Autosomal- Dominant Robinow Syndrome  Janson J. White, Juliana F. Mazzeu, Alexander.
Volume 130, Issue 2, Pages (July 2007)
Volume 20, Issue 5, Pages (March 2010)
RLE-1, an E3 Ubiquitin Ligase, Regulates C
Mst1 Is an Interacting Protein that Mediates PHLPPs' Induced Apoptosis
Transcriptional Control of SLC26A4 Is Involved in Pendred Syndrome and Nonsyndromic Enlargement of Vestibular Aqueduct (DFNB4)  Tao Yang, Hilmar Vidarsson,
De Novo Mutations of CCNK Cause a Syndromic Neurodevelopmental Disorder with Distinctive Facial Dysmorphism  Yanjie Fan, Wu Yin, Bing Hu, Antonie D. Kline,
Mutations in TKT Are the Cause of a Syndrome Including Short Stature, Developmental Delay, and Congenital Heart Defects  Lia Boyle, Mirjam M.C. Wamelink,
Exome Sequencing Identifies CCDC8 Mutations in 3-M Syndrome, Suggesting that CCDC8 Contributes in a Pathway with CUL7 and OBSL1 to Control Human Growth 
Volume 15, Issue 6, Pages (March 2005)
Mutations in NEXN, a Z-Disc Gene, Are Associated with Hypertrophic Cardiomyopathy  Hu Wang, Zhaohui Li, Jizheng Wang, Kai Sun, Qiqiong Cui, Lei Song, Yubao.
Volume 26, Issue 12, Pages e4 (March 2019)
Volume 1, Issue 3, Pages (May 2008)
Mutations in DDHD2, Encoding an Intracellular Phospholipase A1, Cause a Recessive Form of Complex Hereditary Spastic Paraplegia  Janneke H.M. Schuurs-Hoeijmakers,
Chk1 and 14‐3‐3 proteins inhibit atypical E2Fs to prevent a permanent cell cycle arrest Experimental procedures of the SILAC assay to identify binding.
Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome  Carine Le Goff, Curtis Rogers, Wilfried.
Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability  Asbjørg Stray-Pedersen,
Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis  Francesca Mattioli,
Presentation transcript:

Recurrent De Novo Mutations in PACS1 Cause Defective Cranial-Neural-Crest Migration and Define a Recognizable Intellectual-Disability Syndrome  Janneke H.M. Schuurs-Hoeijmakers, Edwin C. Oh, Lisenka E.L.M. Vissers, Mariëlle E.M. Swinkels, Christian Gilissen, Michèl A. Willemsen, Maureen Holvoet, Marloes Steehouwer, Joris A. Veltman, Bert B.A. de Vries, Hans van Bokhoven, Arjan P.M. de Brouwer, Nicholas Katsanis, Koenraad Devriendt, Han G. Brunner  The American Journal of Human Genetics  Volume 91, Issue 6, Pages 1122-1127 (December 2012) DOI: 10.1016/j.ajhg.2012.10.013 Copyright © 2012 The American Society of Human Genetics Terms and Conditions

Figure 1 Photographs and Genetic Data of Two Unrelated Individuals with an Identical De Novo Mutation in PACS1 (A) Upper photograph: individual 1 at 4 years of age with a low anterior hairline, highly arched eyebrows, synophrys, hypertelorism with downslanted palpebral fissures, long eyelashes, a bulbous nasal tip, a flat philtrum with a thin upper lip, downturned corners of the mouth, diastema of the teeth, and low-set ears. Bottom photograph: individual 2 at 12 years of age. Note the remarkable facial similarity. (B) Sequence reads from exome sequencing and chromatograms of Sanger confirmation show the identical de novo occurrence of the c.607C>T mutation in PACS1 (RefSeq NM_018026.2) in individuals 1 and 2. (C) Protein structure of PACS1. The position of the p.Arg203Trp substitution is indicated in the furin (cargo)-binding region (FBR) of the protein and is directly adjacent to the CK2-binding motif. The American Journal of Human Genetics 2012 91, 1122-1127DOI: (10.1016/j.ajhg.2012.10.013) Copyright © 2012 The American Society of Human Genetics Terms and Conditions

Figure 2 In Vivo Functional Characterization of the p.Arg203Trp Substitution in PACS1 (A) Alcian-blue staining of 4-day-old zebrafish larvae expressing either 50 pg wild-type (c.607C [p.Arg203]) or 50 pg mutant (c.607T [p.Trp203]) PACS1 RNA. Left panel: craniofacial cartilaginous structures visualized in both lateral and ventral views of the embryo. Right panel: craniofacial phenotypes in embryos expressing wild-type PACS1, mutant PACS1, and both wild-type and mutant PACS1 are quantified. White arrows and asterisks highlight Meckel’s cartilage in the lateral and ventral perspectives of the embryos. Human wild-type and mutant PACS1 mRNA was transcribed in vitro with a mMESSAGE mMACHINE SP6 Kit (Ambion), and 0.5 nl was microinjected into 2- to 4-cell-stage zebrafish embryos. (B) Imaging of 4-day-old sox10::eGFP zebrafish larvae expressing either 50 pg wild-type or mutant PACS1 RNA. Left panel: migration of eGFP-labeled cranial-neural-crest cells (CNCCs). Right panel: CNCC-migration phenotype scored in embryos expressing wild-type PACS1, altered PACS1, and both wild-type and altered PACS1. The American Journal of Human Genetics 2012 91, 1122-1127DOI: (10.1016/j.ajhg.2012.10.013) Copyright © 2012 The American Society of Human Genetics Terms and Conditions

Figure 3 In Vitro Functional Characterization of the p.Arg203Trp Substitution in PACS1 (A) Localization of GFP-tagged wild-type and altered PACS1 in transfected ARPE-19 cells grown to confluence and stained with a GFP antibody. ARPE-19 cells were grown in Dulbecco’s Modified Eagle Medium and Ham’s F-12 Nutrient 1:1 mixture (DMEM/F-12, Invitrogen) with 10% fetal bovine serum (FBS) and 2 mM L-glutamine. Transfection of wild-type and mutant PACS1 plasmids was carried out with FuGene6 Transfection Reagent (Roche). Cells were fixed with 4% paraformaldehyde 72 hr after transfection and were probed with a GFP antibody (Santa Cruz, sc-8334) and a secondary antibody, Alexa Fluor 488 IgG (Invitrogen). (B) Quantification of wild-type and p.Trp203 PACS1 stability in transfected cells treated with cycloheximide (CHX). The mean measurement of triplicate experiments is shown, and the error bar represents the SEM. HEK 293FT cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) containing 10% FBS (Invitrogen) and 2 mM L-glutamine (Invitrogen). Cells were treated with 50 mM CHX (Sigma) for 6 hr and harvested in co-IP buffer. (C) Immunoprecipitation of GFP-tagged wild-type and altered PACS1 and V5-tagged TRPV4v1 (RefSeq NM_021625) and TRPV4v2 (RefSeq NM_147204). HEK 293 cells were transfected with tagged constructs and harvested in co-IP buffer after 48 hr. Immunoprecipitation was performed with a GFP antibody and immunoblotted with a V5 antibody. The American Journal of Human Genetics 2012 91, 1122-1127DOI: (10.1016/j.ajhg.2012.10.013) Copyright © 2012 The American Society of Human Genetics Terms and Conditions