Chapter 11: Data Warehousing

Slides:



Advertisements
Similar presentations
Chapter 11: Data Warehousing
Advertisements

MIS 385/MBA 664 Systems Implementation with DBMS/ Database Management
IS 4420 Database Fundamentals Chapter 11: Data Warehousing Leon Chen
DAVID M. KROENKE’S DATABASE PROCESSING, 10th Edition © 2006 Pearson Prentice Hall 15-1 David M. Kroenke Database Processing Chapter 15 Business Intelligence.
Chapter 13 The Data Warehouse.
Data Integration Combining data from different sources, providing a unified view of the data Combining data from different sources, providing a unified.
Chapter 10: data Quality and Integration
Dr. Chen, Data Base Management Chapter 10: Data Quality and Integration Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration Gonzaga.
Decision Support and Data Warehouse. Decision supports Systems Components Data management function –Data warehouse Model management function –Analytical.
Decision Support Systems. Decision Support Trends The emerging class of applications focuses on –Personalized decision support –Modeling –Information.
Chapter 11: Data Warehousing
© 2007 by Prentice Hall 1 Chapter 11: Data Warehousing Modern Database Management 8 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden.
COMP 578 Data Warehousing And OLAP Technology Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University.
13 Chapter 13 The Data Warehouse Hachim Haddouti.
Data Warehousing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their.
Chapter 13 The Data Warehouse
1 © Prentice Hall, 2002 Chapter 11: Data Warehousing.
Data Warehousing DSCI 4103 Dr. Mennecke Introduction and Chapter 1.
Chapter 1: Data Warehousing
Components of the Data Warehouse Michael A. Fudge, Jr.
Chapter 4 Data Warehousing.
M ODULE 5 Metadata, Tools, and Data Warehousing Section 4 Data Warehouse Administration 1 ITEC 450.
Data Warehousing.
Business Intelligence. Topics Chart Online Analytical Process, OLAP – Excel’s Pivot table – Data visualization with dashboard Data warehousing Data Mining.
Week 6 Lecture The Data Warehouse Samuel Conn, Asst. Professor
MIS 385/MBA 664 Systems Implementation with DBMS/ Database Management Dave Salisbury ( )
© 2011 Pearson Education, Inc. Publishing as Prentice Hall 1 Chapter 10: Data Quality and Integration Modern Database Management 10 th Edition Jeffrey.
Chapter 9: data warehousing
Data Warehouse & Data Mining
MBA 664 Database Management Systems Dave Salisbury ( )
DATA WAREHOUSING. Introduction Modern organizations have huge amounts of data but are starving for information – facing information gap! Reasons for information.
DW-1: Introduction to Data Warehousing. Overview What is Database What Is Data Warehousing Data Marts and Data Warehouses The Data Warehousing Process.
Datawarehouse Objectives
1 Data Warehouses BUAD/American University Data Warehouses.
MIS 385/MBA 664 Systems Implementation with DBMS/ Database Management
1 Data Warehousing. 2Definition Data Warehouse Data Warehouse: – A subject-oriented, integrated, time-variant, non- updatable collection of data used.
Data Warehousing.
Chapter 9: data warehousing
1 Topics about Data Warehouses What is a data warehouse? How does a data warehouse differ from a transaction processing database? What are the characteristics.
6.1 © 2010 by Prentice Hall 6 Chapter Foundations of Business Intelligence: Databases and Information Management.
UNIT-II Principles of dimensional modeling
Decision supports Systems Components
Business Intelligence. Topics Chart Online Analytical Process, OLAP – Excel’s Pivot table – Data visualization with dashboard Scenario Management Data.
Chapter 11: Data Warehousing Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden.
Business Intelligence Transparencies 1. ©Pearson Education 2009 Objectives What business intelligence (BI) represents. The technologies associated with.
Data Warehousing.
Advanced Database Concepts
Carnegie Mellon University © Robert T. Monroe Management Information Systems Data Warehousing Management Information Systems Robert.
© 2013 Pearson Education, Inc. Publishing as Prentice Hall 1 CHAPTER 10: DATA QUALITY AND INTEGRATION Modern Database Management 11 th Edition Jeffrey.
 Definition of terms  Reasons for need of data warehousing  Describe three levels of data warehouse architectures  Describe two components of star.
The Need for Data Analysis 2 Managers track daily transactions to evaluate how the business is performing Strategies should be developed to meet organizational.
© 2009 Pearson Education, Inc. Publishing as Prentice Hall 1 Lecture 14: Data Warehousing Modern Database Management 9 th Edition Jeffrey A. Hoffer, Mary.
Copyright © 2016 Pearson Education, Inc. Modern Database Management 12 th Edition Jeff Hoffer, Ramesh Venkataraman, Heikki Topi CHAPTER 9: DATA WAREHOUSING.
1 Data Warehousing Data Warehousing. 2 Objectives Definition of terms Definition of terms Reasons for information gap between information needs and availability.
Lecture 12: Data Quality and Integration
Data Mining and Data Warehousing: Concepts and Techniques What is a Data Warehouse? Data Warehouse vs. other systems, OLTP vs. OLAP Conceptual Modeling.
1 HCMC UT, 2008 Data Warehousing 1.Basic Concepts of data warehousing 2.Data warehouse architectures 3.Some characteristics of data warehouse data 4.The.
Chapter 13 Business Intelligence and Data Warehouses
Chapter 13 The Data Warehouse
Summarized from various resources Modern Database Management
Data Warehouse.
Chapter 13 – Data Warehousing
Competing on Analytics II
Chapter 1: Data Warehousing
Data Warehouse and OLAP
Typically data is extracted from multiple sources
Data Warehouse.
Data Warehousing Concepts
Data Warehouse and OLAP
Presentation transcript:

Chapter 11: Data Warehousing Modern Database Management 8th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden © 2007 by Prentice Hall

Objectives Definition of terms Reasons for information gap between information needs and availability Reasons for need of data warehousing Describe three levels of data warehouse architectures List four steps of data reconciliation Describe two components of star schema Estimate fact table size Design a data mart

Definition Data Warehouse: Data Mart: A subject-oriented, integrated, time-variant, non-updatable collection of data used in support of management decision-making processes Subject-oriented: e.g. customers, patients, students, products Integrated: Consistent naming conventions, formats, encoding structures; from multiple data sources Time-variant: Can study trends and changes Nonupdatable: Read-only, periodically refreshed Data Mart: A data warehouse that is limited in scope

Need for Data Warehousing Integrated, company-wide view of high-quality information (from disparate databases) Separation of operational and informational systems and data (for improved performance)

Source: adapted from Strange (1997).

Data Warehouse Architectures Generic Two-Level Architecture Independent Data Mart Dependent Data Mart and Operational Data Store Logical Data Mart and Real-Time Data Warehouse Three-Layer architecture All involve some form of extraction, transformation and loading (ETL)

Figure 11-2: Generic two-level data warehousing architecture One, company-wide warehouse T E Periodic extraction  data is not completely current in warehouse

Figure 11-3 Independent data mart data warehousing architecture Data marts: Mini-warehouses, limited in scope E T L Separate ETL for each independent data mart Data access complexity due to multiple data marts

Figure 11-4 Dependent data mart with operational data store: a three-level architecture ODS provides option for obtaining current data E T L Single ETL for enterprise data warehouse (EDW) Dependent data marts loaded from EDW Simpler data access

Figure 11-5 Logical data mart and real time warehouse architecture ODS and data warehouse are one and the same E T L Near real-time ETL for Data Warehouse Data marts are NOT separate databases, but logical views of the data warehouse  Easier to create new data marts

Figure 11-6 Three-layer data architecture for a data warehouse

Data Characteristics Status vs. Event Data Figure 11-7 Example of DBMS log entry Status Event = a database action (create/update/delete) that results from a transaction

Data Characteristics Transient vs. Periodic Data Figure 11-8 Transient operational data With transient data, changes to existing records are written over previous records, thus destroying the previous data content

Data Characteristics Transient vs. Periodic Data Figure 11-9: Periodic warehouse data Periodic data are never physically altered or deleted once they have been added to the store

Other Data Warehouse Changes New descriptive attributes New business activity attributes New classes of descriptive attributes Descriptive attributes become more refined Descriptive data are related to one another New source of data

The Reconciled Data Layer Typical operational data is: Transient–not historical Not normalized (perhaps due to denormalization for performance) Restricted in scope–not comprehensive Sometimes poor quality–inconsistencies and errors After ETL, data should be: Detailed–not summarized yet Historical–periodic Normalized–3rd normal form or higher Comprehensive–enterprise-wide perspective Timely–data should be current enough to assist decision-making Quality controlled–accurate with full integrity

The ETL Process Capture/Extract Scrub or data cleansing Transform Load and Index ETL = Extract, transform, and load

Figure 11-10: Steps in data reconciliation Capture/Extract…obtaining a snapshot of a chosen subset of the source data for loading into the data warehouse Figure 11-10: Steps in data reconciliation Incremental extract = capturing changes that have occurred since the last static extract Static extract = capturing a snapshot of the source data at a point in time

Figure 11-10: Steps in data reconciliation Scrub/Cleanse…uses pattern recognition and AI techniques to upgrade data quality Figure 11-10: Steps in data reconciliation (cont.) Fixing errors: misspellings, erroneous dates, incorrect field usage, mismatched addresses, missing data, duplicate data, inconsistencies Also: decoding, reformatting, time stamping, conversion, key generation, merging, error detection/logging, locating missing data

Figure 11-10: Steps in data reconciliation Transform = convert data from format of operational system to format of data warehouse Figure 11-10: Steps in data reconciliation (cont.) Record-level: Selection–data partitioning Joining–data combining Aggregation–data summarization Field-level: single-field–from one field to one field multi-field–from many fields to one, or one field to many

Figure 11-10: Steps in data reconciliation Load/Index= place transformed data into the warehouse and create indexes Figure 11-10: Steps in data reconciliation (cont.) Refresh mode: bulk rewriting of target data at periodic intervals Update mode: only changes in source data are written to data warehouse

Figure 11-11: Single-field transformation In general–some transformation function translates data from old form to new form Algorithmic transformation uses a formula or logical expression Table lookup–another approach, uses a separate table keyed by source record code

Figure 11-12: Multifield transformation M:1–from many source fields to one target field 1:M–from one source field to many target fields

Derived Data Objectives Characteristics Ease of use for decision support applications Fast response to predefined user queries Customized data for particular target audiences Ad-hoc query support Data mining capabilities Characteristics Detailed (mostly periodic) data Aggregate (for summary) Distributed (to departmental servers) Most common data model = star schema (also called “dimensional model”)

Figure 11-13 Components of a star schema Fact tables contain factual or quantitative data 1:N relationship between dimension tables and fact tables Dimension tables are denormalized to maximize performance Dimension tables contain descriptions about the subjects of the business Excellent for ad-hoc queries, but bad for online transaction processing

Figure 11-14 Star schema example Fact table provides statistics for sales broken down by product, period and store dimensions

Figure 11-15 Star schema with sample data

Issues Regarding Star Schema Dimension table keys must be surrogate (non-intelligent and non-business related), because: Keys may change over time Length/format consistency Granularity of Fact Table–what level of detail do you want? Transactional grain–finest level Aggregated grain–more summarized Finer grains  better market basket analysis capability Finer grain  more dimension tables, more rows in fact table Duration of the database–how much history should be kept? Natural duration–13 months or 5 quarters Financial institutions may need longer duration Older data is more difficult to source and cleanse

Figure 11-16: Modeling dates Fact tables contain time-period data  Date dimensions are important

The User Interface Metadata (data catalog) Identify subjects of the data mart Identify dimensions and facts Indicate how data is derived from enterprise data warehouses, including derivation rules Indicate how data is derived from operational data store, including derivation rules Identify available reports and predefined queries Identify data analysis techniques (e.g. drill-down) Identify responsible people

On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their data and allows them to analyze the data using simple windowing techniques Relational OLAP (ROLAP) Traditional relational representation Multidimensional OLAP (MOLAP) Cube structure OLAP Operations Cube slicing–come up with 2-D view of data Drill-down–going from summary to more detailed views

Figure 11-23 Slicing a data cube

Figure 11-24 Example of drill-down Summary report Starting with summary data, users can obtain details for particular cells Drill-down with color added

Data Mining and Visualization Knowledge discovery using a blend of statistical, AI, and computer graphics techniques Goals: Explain observed events or conditions Confirm hypotheses Explore data for new or unexpected relationships Techniques Statistical regression Decision tree induction Clustering and signal processing Affinity Sequence association Case-based reasoning Rule discovery Neural nets Fractals Data visualization–representing data in graphical/multimedia formats for analysis