Block design status EuroCirCol

Slides:



Advertisements
Similar presentations
Mechanical Design & Analysis Igor Novitski. Outlines Electromagnetic Forces in the Magnet Goals of Finite Element Analysis Mechanical Concept Description.
Advertisements

EuCARD-HFM ESAC review of the high field dipole design, 20/01/2011, Maria Durante, 1/40 EuCARD-HFM ESAC Review of the high field dipole design Fabrication.
S. Caspi, LBNL HQS Progress Report High Field Nb 3 Sn Quadrupole Magnet Shlomo Caspi LBNL Collaboration Meeting – CM11 FNAL October 27-28, 2008.
Preliminary Design of Nb 3 Sn Quadrupoles for FCC-hh M. Karppinen CERN TE-MSC.
Superconducting Large Bore Sextupole for ILC
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
FCC Week 2015Design Options for 16 T LTS Dipoles – G. Sabbi 1 Overview of Magnet Design Options for LTS Dipoles in the 16 T Range GianLuca Sabbi, LBNL.
Magnets for muon collider ring and interaction regions V.V. Kashikhin, FNAL December 03, 2009.
Development of the EuCARD Nb 3 Sn Dipole Magnet FRESCA2 P. Ferracin, M. Devaux, M. Durante, P. Fazilleau, P. Fessia, P. Manil, A. Milanese, J. E. Munoz.
SC magnet developments at CEA/Saclay Maria Durante Hélène Felice CEA Saclay DSM/DAPNIA/SACM/LEAS.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
ASC 2014Nb 3 Sn Block Coil Dipoles for a 100 TeV Hadron Collider – G. Sabbi 1 Performance characteristics of Nb 3 Sn block-coil dipoles for a 100 TeV hadron.
MQXF support structure An extension of LARP experience Helene Felice MQXF Design Review December 10 th to 12 th, 2014 CERN.
CERN Accelerator School Superconductivity for Accelerators Case study 1 Paolo Ferracin ( ) European Organization for Nuclear Research.
Subscale quadrupole (SQ) series Paolo Ferracin LARP DoE Review FNAL June 12-14, 2006.
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
Hybrid Structure with Cooling John Cozzolino LARP Collaboration Meeting Port Jefferson, NY November 4-6, 2009.
Magnet design, final parameters Paolo Ferracin and Attilio Milanese EuCARD ESAC review for the FRESCA2 dipole CERN March, 2012.
New options for the new D1 magnet Qingjin Xu
Dipole design at the 16 T frontier - Magnet R&D for a Future Circular Collider (FCC) at Fermilab Alexander Zlobin Fermilab.
11 T Dipole Project Goals and Deliverables M. Karppinen on behalf of CERN-FNAL collaboration “Demonstrate the feasibility of Nb3Sn technology for the DS.
Muon Cooling Channel Superconducting Magnet Systems Muon Collider Task Force Meeting on July 31, 2006 V.S. Kashikhin.
CERN Accelerator School Superconductivity for Accelerators Case study 3 Paolo Ferracin ( ) European Organization for Nuclear Research.
16 T Dipole Design Options: Input Parameters and Evaluation Criteria F. Toral - CIEMAT CIEMAT-VC, Sept. 4th, 2015.
ECC Clément Lorin – Maria Durante Acknowledgements: Fresca2 team.
CEA DSM Irfu WP 7.4 : Insert design and construction M. Devaux J-M Rey, M. Durante, P. Tixador, C. Pes 18/09/2012HFM collaboration meeting WP 7 - Milano.
4th Joint HiLumi LHC-LARP Annual Meeting D2 Design, Status, Plan P.Fabbricatore & S.Farinon INFN Genova Presented by E.Todesco (CERN)  INFN Genova is.
Cosine-theta configurations for S.C. Dipole Massimo Sorbi on behalf of: INFN LASA & Genova Team Giovanni Bellomo, Pasquale Fabbricarore, Stefania Farinon,
DESIGN STUDIES IR Magnet Design P. Wanderer LARP Collaboration Meeting April 27, 2006.
IR Magnets for Muon Collider Alexander Zlobin and Vadim Kashikhin Muon Collider Physics Workshop, Fermilab November 12, 2009.
Preliminary analysis of a 16 T sc dipole with cos-theta lay-out INFN team October 2015.
16 T dipole in common coil configuration: mechanical design
Nb3Sn wiggler development
Mechanical behavior of the EuroCirCol 16 T Block-type dipole magnet during a quench Junjie Zhao, Tiina Salmi, Antti stenvall, Clement Lorin 1.
Massimo Sorbi on behalf of INFN team:
MQXC Nb-Ti 120mm 120T/m 2m models
WORK IN PROGRESS F C C Main Quadrupoles FCC week 2017
TQS Structure Design and Modeling
WP-7 / Task 4 Very high field magnet
16 T Cosq DIPOLE Mechanical Analysis
Segreti, Lorin, Durante 11 July 2017
At ICFA Mini-Workshop on High Field Magnets for pp Colliders,
Status of Detector Solenoid and Anti-DID
16 T Nb3Sn block dipole EuroCirCol
CERN-INFN, 23 Febbraio 2017 Stato del programma 16 T Davide Tommasini.
Cosq configuration - Mechanics
EuroCirCol: 16T dipole based on common coils (DRAFT)
Mechanical Modelling of the PSI CD1 Dipole
FRESCA2 Update on the dipole design and new calculations
EuroCirCol: 16T dipole based on common coils
16 T dipole in common coil configuration: mechanical design
Bore quench field vs. critical current density
Mechanical results on the double aperture Version V20ar
DS11 T Transfer function, integral field and coil length
FCC-hh 16 T, 1.9 K INFN Team October 2015.
Protection Database Tool
the MDP High Field Dipole Demonstrator
16T Cosθ Dipole Configuration
MKQXF FEA Model Haris Kokkinos
Large aperture Q4 M. Segreti, J.M. Rifflet
MQXF coil cross-section status
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
P.Fabbricatore & S.Farinon
Large aperture Q4 M. Segreti, J.M. Rifflet
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Muon Collider SR and IR Magnets
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
FRESCA2 - Coils 1+2 scenario
Cross-section of the 150 mm aperture case
Presentation transcript:

Block design status EuroCirCol Clément Lorin, Maria Durante 16 may 2017 Acknowledgements:

Critical surface Nb3Sn Jc (1.9 K, 16 T) = 2245 A/mm² no cabling degr. C0 = 267845 AT/mm² where t = T/Tc0 and b = B/Bc2(t) with B the magnetic flux density on the conductors. Tc0 = 16 K, Bc20 = 29.38 T, α = 0.96, are fitting parameters computed from the analysis of measurements on the conductor. Similarly: Jc (1.9 K, 16 T) = 2312 A/mm² 3% cabling degr. C0 = 275880 AT/mm²

Design evolution bore tip th. decrease Quantity ASC2016 v20ar v1ari204 Unit strand diameter 1.1 – 0.7 1.155 – 0.705 1.15 – 0.70 mm nb of strands 24 – 39 21 – 35 20 – 34 N/A width 14.25 13.05 12.6 average thickness 2.0 – 1.25 2.1 – 1.25 Cu/nonCu 0.8 – 1.6 0.8– 2.3 0.8– 2.0 Inom 10930 10990 10465 A Bpeak 16.81 16.74 16.72 T LL margin (1.9 K) 13.95 14.01 13.94 % Inductance diff. (2 ap) 48.06 39.80 44.2 mH/m Stored energy (2 ap) 3016 2518 2542 kJ/m Nb of turns 114 = 3+3+9+9 +22+22+23+23 104 = 5+5+10+10 +18+18+19+19 108 = 5+5+9+9 +19+19+21+21 - Fx & Fy (per ½-coil) 8473 & -3572 8042 & -3347 8042 & -3329 kN/m Hotspot 348 349 351 K Bore thickness 6.3 1.75 1.6 Midplane shim 1.45 2.25 LdxI (1 aperture) 263 218 232 HA/m I/Ic HF-LF 0.47 – 0.61 Conductor area (2 ap) 151.9 133.7 130.3 cm² 4578 x 14.3 x 8.7 weight 8652 7614 7420 tons = v20ar v1ari204 bore tip th. decrease interbeam decrease (250mm -> 204 mm) insulation = 0.15 mm

Harmonic contents v1ari204: higher cross-talking (b2 = 24 units) at nominal 16 T: 1 T 3.3 T 16 T

Fringe field R = 1 meter -> Bnorm ~ 3 mT R = 1 m 0° 90°

Emag 3D Opera model: Bpss-Bpends = 0.4 T Lyoke = Lcoil = 1780 mm Lpads = 1100 mm Lmag = 1498 mm 141 mm 340 mm Harmonics from 560 mm to 960 mm (orange box) b3 can be easily tuned Bpss-Bpends = 0.4 T

Emag 3D - Optics Question asked to beam guys (WP2, A. Chance, B. Dalena): No straight section length effect What we usually do: Optimization depends on the SS length 14 m with b3 = 6 units 2x0.15 m with b3 = -300 units To get more compact ends for block design Is that feasible?

Need validation/correction Graded: how? Need validation/correction by Etienne et Susana Two options: External connexions vs Internal connexions Courtesy from Etienne Rochepault CERN Development program CERN, CEA, PSI,…? Pros&Cons: -Coil assembly: cable to take care -End parts: cable path outwards -Additional connexion box -Shorter ends -Connexion length -Splice in low field area Pros&Cons: -Length of the splice (not long enough < Tp) -Gap between LF&HF: longer ends -Splice in high field area -Coil assembly easier -End parts simpler

Mechanics v1ari204 63 mm thick shell 700 µm ← 50 µm ↓ 1.6 mm thick bore tip Ryoke = 273 mm Contacts/symmetry: sliding; 0.2 friction glued: coils with pole vertically and with shoes rail is a block for rigidity

Coil stress v1ari204 Contact at 105% σ von Mises σhorizontal Keys in 106 MPa -117 MPa 190 MPa -203 MPa 185 MPa -186 MPa Contact at 105% 16.8 T central field 105 % nominal -19 MPa +145 MPa 16.0 T central field 100 % nominal +11 MPa +98 MPa

Coil displacement Before key insertion to nominal powering 16 T x horizontal disp. y vertical disp. 1 2 3 4 5 6 1 2 3 4 5 6 u1x_nominal = -68 µm u2x_nominal = -85 µm u3x_nominal = -27 µm u4x_nominal = -10 µm u5x_nominal = -440 µm u6x_nominal = -368 µm u1y_nominal = -17 µm u2y_nominal = -146 µm u3y_nominal = -171 µm u4y_nominal = -255 µm u5y_nominal = -192 µm u6y_nominal = -17 µm compaction ~ 1% of cable width

Aluminum shell Cold – 4.2 K 16.8 T (105% nominal) Key σ theta Rp0.2 RT 480 MPa 690 MPa Cold – 4.2 K 16.8 T (105% nominal) Key σ theta

Iron yoke Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises Rp0.2 RT cold/tension Magnetil 180 MPa 230 MPa 723 MPa/200 MPa 723 MPa/380 MPa Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises σI – tension max

Iron pad1 Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises Rp0.2 RT cold/tension Magnetil 180 MPa 230 MPa 723 MPa/200 MPa 723 MPa/380 MPa Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises σI – tension max

Iron pad2 Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises Rp0.2 RT cold/tension Magnetil 180 MPa 230 MPa 723 MPa/200 MPa 723 MPa/380 MPa Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises σI – tension max

Titanium pole Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises Rp0.2 RT cold/tension Ti-6Al-4V 827 MPa 1624 MPa Cold – 4.2 K 16.8 T (105% nominal) Key σ von Mises 489 MPa 891 MPa 1140 MPa

Conclusion Bore tip to be modified Vertical pad to be modified 1.75 mm / ground ins. taken into account Vertical pad to be modified Roundish angle -> Emag impact Double aperture Split vertical key to improve coil-pole contact and reduce peak stress (230 MPa*) Start working on 204 mm interbeam Shall we stop working with 1.15 mm strand? Demonstrator strands? *260 MPa: H. Felice et al. Performance of Nb3Sn quad under high stress https://www.osti.gov/scitech/biblio/1048936

Key position 18 mm 20 mm 27 mm 25 mm Single aperture:

extra Coil stress v1ari204 Contact at 100% σ von Mises σhorizontal Keys in 1.8 K 16.8 T σ von Mises σhorizontal 91 MPa -101 MPa 175 MPa -187 MPa 159 MPa -175 MPa Contact at 100% 16.0 T central field 100 % nominal -3 MPa 131 MPa About 10 to 15 MPa less than a contact at 105% σeq (100%,4.2K) = 175 MPa σx (105%, 4.2K) = -203 MPa