Beam dynamics of RAON accelerator system

Slides:



Advertisements
Similar presentations
R. Miyamoto, Beam Physics Design of MEBT, ESS AD Retreat 1 Beam Physics Design of MEBT Ryoichi Miyamoto (ESS) November 29th, 2012 ESS AD Retreat On behalf.
Advertisements

C. Rossi – L4 Project Meeting 3 March 2011 Status and Plans of 3 MeV Test Stand.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Experience with Bunch Shape Monitors at SNS A. Aleksandrov Spallation Neutron Source, Oak Ridge, USA.
Ion Accelerator Complex for MEIC January 28, 2010.
Managed by UT-Battelle for the Department of Energy SNS MEBT : Beam Dynamics, Diagnostics, Performance. Alexander Aleksandrov Oak Ridge National Laboratory.
Carbon Injector for FFAG
FFAG-ERIT R&D 06/11/06 Kota Okabe (Kyoto Univ.) for FFAG-DDS group.
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
J. Rodnizki SARAF, Soreq NRC HB2008, August, 2008 Nashville TN Lattice Beam dynamics study and loss estimation for SARAF/ EURISOL driver 40/60 MeV 4mA.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Technical aspects of the ATLAS efficiency & intensity upgrade Peter N. Ostroumov ATLAS Users Workshop, August 8-9, 2009.
Simultaneous Delivery of Parallel Proton Beams with the EURISOL Driver
Page 1 Review 09/2010 MEIC Ion Linac and Pre-Booster Design Bela Erdelyi Department of Physics, Northern Illinois University, and Physics Division, Argonne.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
J. Alessi RF Structures EBIS Project Technical Review 1/27/05 RF Structures J. Alessi Some general thoughts on what our approach will be.
Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans H. Okuno, et. al. (RIKEN Nishina Center) and P. Ostroumov (ANL) Upgrade Injector Low.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
ICIS2015 in NY Y.HIGURASHI Y. Higurashi (RIKEN Nishina center) 1.Introduction RIKEN RIBF and RIKEN 28GHz SC-ECRIS 2.Emittance measurements 1.4D.
EBIS ARR Jim Alessi May 4- 7, 2010 Technical Overview.
BEAM TRANSFER CHANNELS, BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS OF NICA ACCELERATOR COMPLEX Tuzikov A., JINR, Dubna, Russia.
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
ICFA-HB 2004 Commissioning Experience for the SNS Linac A. Aleksandrov, S. Assadi, I. Campisi, P. Chu, S. Cousineau, V. Danilov, G. Dodson, J. Galambos,
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
A.Saini, K.Ranjan, N.Solyak, S.Mishra, V.Yakovlev on the behalf of our team Feb. 8, 2011 Study of failure effects of elements in beam transport line &
RAON LEBT Design Yonghwan Kim Institute for Basic Science Yonghwan Kim Institute for Basic Science.
Choppers Comparison of three schemes of choppers is made 2.5 MeV and 2.1 MeV beam energies are considered Presented by Boris Shteynas May,
Warm Front End Concept A. Shemyakin PIP-II Machine Advisory Committee 9-11 March 2015.
The Preparation for CSNS Accelerator Commissioning Sheng Wang June 8, 2015, Dongguan.
ESS Front End diagnostic
Orsay January 2008 ‹#› Post-accelerator Beam Dynamics Last results for beam dynamics on MEBT line and superconducting LINAC Joint Meeting Orsay 7 th Patrick.
Overview of the RISP SCL
NICA injection complex status
Alexander Aleksandrov Spallation Neutron Source Oak Ridge, USA
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
General Design of C-ADS Accelerator Physics
A. Martynov on behalf of accelerator division.
A.Lachaize CNRS/IN2P3 IPN Orsay
IF Separator Design of RAON
HIPPI yearly meeting, sep28-sep
Progress in the Multi-Ion Injector Linac Design
Injector Cyclotron for a Medical FFAG
Acceleration of RIB using linacs
A. Plastun¹, B. Mustapha, Z. Conway and P. Ostroumov
1- Short pulse neutron source
Beam dynamics simulation for HEBT at KHIMA Synchrotron System
EffiCAS Efficient Facility for Ions at CAS
Progress activities in short bunch compressors
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
Pulsed Ion Linac for EIC
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
SC ISOL Linac of KoRIA Tae-Sun Park (SKKU).
November 7, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
Summary & Concluding remarks
MEBT1&2 design study for C-ADS
Physics Design on Injector I
Studies on orbit corrections
Status of the JLEIC Injector Linac Design
DTL for MEIC Ion Injection
Multi-Ion Injector Linac Design – Progress Summary
Progress Update on the Electron Polarization Study in the JLEIC
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
RF system for MEIC Ion Linac: SRF and Warm Options
Presentation transcript:

Beam dynamics of RAON accelerator system 20th May 2013 Eun-San Kim KNU (Kyungpook National Univ.)

Contents  Beam dynamics in - FRONT-END ( LEBT, RFQ, MEBT ) - LINAC ( Linac-1, Charge stripper, Linac-2, HEBT)  Beam dynamics in - Post accelerator ( Linac-2, Charge stripper) - P2DT - Linac-2

LEBT EQ BM PS Length :15.872m HV 1 DG D G 2 3 4 2.69 m ρ=0.65m 3.42 m Slit D G 3 deflector VE RFQ PS ECRIS EQ Sol 1 DG Col 2 2.69 m 3.42 m 7.42 m 4 Length :15.872m BM ρ=0.65m Chop : Chopper DG1 : Slit,View,WS,FC DG2 : EM,FC DG3 : Slit,View,WS,FC DG4 : WS PS : pair solenoid EQ : Electrostatic Quadrupole (Triplet) Col : collimation system MHB : Multi Harmonic Buncher VE : Velocity Equalizer

LEBT 1m 16m PS BM1 SLIT Chop DG2 BUN SOL VE RFQ BM2 DG1 COL D G 3 EQ Verti 6cm 4cm 2cm 1m Hori 2cm 16m 4cm 6cm PS BM1 SLIT Chop DG2 BUN SOL VE RFQ BM2 DG1 COL D G 3 EQ DG4 E C R

LEBT (1 M particle tracking) ■ Energy : 10 keV/u 238Uranium Q : 33+,34+ ■ Emittance(n,r) : 0.08 π mm mrad ■ ΔE/E ~1.5% Exit ECR Between two bends

LEBT (1 M particle tracking) Downstream MHB Upstream VE Entrance of RFQ

LEBT components Element Amount Strength Length [cm] Bending Magnet 2 Θ = 90 ˚ Pair Solenoid 4 5.0 kG 30, 30 Solenoid 1 6.0 kG 50 ESQ 3 10.0 kV 15 ,15 ,15 10.0kV 15,15 MHB 40.625 MHz . 81.250 MHz . 121.875 MHz . 24 Velocity Equalizer 40.625 MHz 10 Chopper 3 kV 15

238U+33 238U+34 RFQ (using 1 M particles from LEBT) 10 keV/u 500keV/u 81.25 MHz, 70kV124kV 238U+33 238U+34

(using 1 M particles from LEBT) RFQ (using 1 M particles from LEBT) Exit of RFQ ■238U+33 ■238U+34 Phamteq TRACK TRACK

                                                                                                                                                                                                                                                                                                                                  MEBT Exit of MEBT Exit of RFQ

Charge stripper section ORBIT

Charge stripper section Magnet parameter in CS line  Charge state Population [%] Charge state 74+ 0.43 80+ 20.80 75+ 1.53 81+ 12.77 76+ 4.41 82+ 5.17 77+ 11.24 83+ 1.32 78+ 18.78 84+ 0.203 79+ 23.33 Slit Slit Magnet parameter in CS line Rc, Gap [mm] Leff [mm] Btip, Bgap [T] Max B' [T/m] # of element Remark* Q1 25 250 0.53 21.2 4 Q2 60 300 0.6 10 8 Bend 50 1257 1.3  1 Q3 100 0.65 6.5 Q4A Q4 0.35 14 Q4B

Linac Layout

Linac1+CS+Linac2 (U beam from LEBT)

Linac1+CS+Linac2 (1 M particles from LEBT)

Linac1+CS+Linac2 (1 M particles from LEBT) εnx: 0.149 mm-mrad εny: 0.202 mm-mrad εnx: 0.112 mm-mrad εny: 0.135 mm-mrad εnz: 5.51 keV/u-ns εnz: 0.265 keV/u-ns

Linac1+CS+Linac2 (1 M particles from LEBT)

Linac1+CS+Linac2 (1 M particles from LEBT)

HEBT (Optics) J. Yoon

HEBT (1 M particles from LEBT)

HEBT (1 M particles from LEBT)

Proton beam (Initial Beam condition) ■ Energy : ■ Qdesign : 1 Adesign : 1 ■ Emittance(n,r) : 0.15 π mm mrad Emittance(n,full) : 0.9 π mm mrad ■ ECR extraction hall size : 5 mm ■ ΔE/E ~0.05%

Proton beam (LEBT) -60 ˚ < 84.5% < 60˚ 1D dE/E (%) 4*ezn : 1.29560 keV/u ns 1D dE/E (%) event 1D phase (degree) -60 ˚ < 84.5% < 60˚ event

Proton beam (RFQ)

Proton beam (MEBT) Exit of RFQ Exit of MEBT envelope

Proton beam (Charge stripper section)

Proton beam (Linac+CS+Linac2) Beam parameters E0 = 630.07 MeV/u for 1p σx = 1.31 mm, εnx = 0.236 mm-mrad σy = 1.43 mm, εny = 0.259 mm-mrad σz = 0.565 deg (@ 81.25 MHz) εnz = 1.10 keV/u-ns

Proton beam (Linac1+CS+Linac2)

Start-to-End Simulation (U-beam) Number of Particle Transm. Efficiency (%) Current[puA] 33+, 34+ 77 78 79 80 81 Nor.rms εx [mm-mrad] Nor. rms εy Nor. rms εz [MeV-deg] Initial 1000002 100 6/6 0.075 - LEBT 998000 99.8 0.082 3.56 RFQ 976562 97.6 5.92/5.7 0.11 0.13 1.81 MEBT 0.112 0.135 1.84 SCL1 972430 97.2 0.124 0.146 3.92 CS 822143 82.2 0.148 0.193 25.69 SCL2 813787 81.3 1.12/1.97/2.56 2.42/1.57 (9.8) 0.15 0.2 39.05 HEBT 8137887 1.12/1.97/2.56/2.42/1.57 (9.6) 0.195 0.229 165 FRIB

Start-to-End Simulation (proton) Number of Particle Transm. Efficiency (%) Current[mA] Nor.rms εx [mm-mrad] Nor. rms εy Nor. rms εz [MeV-deg] Initial 10000 100 1 0.15 - LEBT 0.005 RFQ 8784 87.8 0.87 0.175 0.174 0.019 MEBT 0.197 0.207 0.021 SCL1 8783 0.218 0.241 0.024 CS 0.233 0.250 SCL2 0.236 0.259 0.032

SCL3+P2DT+SCL2 (132Sn beam)

Linac 3 [132Sn20 , TRACE_WIN]

Linac 3 [132Sn20 , TRACE_WIN]

P2DT (132Sn beam)

SCL3+P2DT+SCL2 (132Sn beam)

SCL3+P2DT+SCL2 (132Sn beam)

SCL3+P2DT+SCL2 (132Sn beam) Beam parameters E0 = 183.60 MeV/u for 132Sn45+ σx = 2.44 mm, εnx = 0.490 mm-mrad σy = 2.46 mm, εny = 0.407 mm-mrad σz = 0.453 deg (@ 81.25 MHz) εnz = 1.62 keV/u-ns

Used simulation codes LEBT : TRACK, IMAPCT, TRANSPORT RFQ : TRACK, PARMTEQ MEBT : TRACK, IMAPCT, TRACE3D LINAC : TRACK, IMPACT, TRACE_WIN P2DT : TRACK, TRACE3D HEBT : TRACK, IMPACT, GCOSY

Errors in Linac Initial energy : 500 keV/u Beam current : 0.2 mA for each charge state Macro-particle : 1k particles for each charge state # of seed : 116 Misalignment error QMs : 150 um [Uniform] BMs : 150 um [Uniform] Cavities : 500 um [Uniform] Tilt error All elements : 5 mrad Cavities Voltage & Phase error : 1 % [Gaussian]

Orbits in Linac-1 Before correction Before correction After correction

Scheme for orbit correction [QWR] Two cell was merged to one for correction. 1cell Corrector BPMs Beam ~75.5 cm 15cm 16cm 74cm QWR Beam-line specification Strength of QMs : 0.315 ~ 0.410 T (effective length : 16 cm) Effective length of QWRs : 22 cm , Peak E field : 15 ~ 30 MV/m Initial energy : 0.5 MeV/u, Final energy : 2.57 MeV/u, # of cell : 22 BPMs and Correctors are installed in each QMs.

Scheme for orbit correction [HWR] Two cell was merged to one for correction. 20cm ~14.5 cm 1.40 m HWR1 cell 19 cm ~25cm 20cm ~14.5 cm 1.40 m 19 cm ~25cm Corrector BPMs 20cm 16.5 cm 2.72 m HWR2 cell 19 cm 25 cm 20cm 16.5 cm 2.72 m 19 cm 25 cm Corrector BPMs HWR Beam-line specification Strength of QMs : 0.364 ~ 0.540 T (effective length : 20 cm) Effective length of HWRs : 25 cm , Peak E field : 21 ~ 30 MV/m Initial energy : 2.57 MeV/u, Final energy : 18.6 MeV/u , # of cell : 13 (HWR1), 14 (HWR2) BPMs and Correctors are installed in each QMs.

Summary Start-to-end beam simulations were performed to optimize the beam and accelerator parameters for multi-charge state beams. - The simulation results show that our design is within scope of our goals. More things to do - Longitudinal emittance needs to be reduced more. - Error effects

LEBT Initial Beam condition ■ Energy : 10keV/u Uranium ■ Q_design : 33,34 A_design : 238 ■ Emittance(n,r) : 0.07/0.08 π mm mrad (U33,34) ■ ECR extraction hall size : 5 mm ■ ΔE/E ~1.5% (Q : 33.5)

LEBT (Longitudinal distribution @ RFQ entrance)

U33.5+ IMPACT-Z result U33.5+ TRACK result

LEBT Electrostatic deflectors - - - - - - - - E + + + + + + + + + d l Extraction voltage L d = 5.25 cm → beam size should become smaller than 2.5cm @ collimator

Multi harmonic buncher rf Voltage ratio for a three freq. 40.625 MHz = 1 81.25 MHz = 0.351 121.875MHz= 0.115 diameter of electrode : 4 cm CST code simulation

LEBT Velocity Equalizer system ■ Reduce the effective energy spread of two-charge state beams Shape of VE E-field e : elementary charge V0 : accelerating voltage A : mass number m0 : nucleon rest mass q0 : highest charge state of ions c : speed of light 10keV/u in 238U34+, 238U33+ Δp/p = 0.75% RFQ_Frequency : 81.25 MHz V0 : 71.04kV A : 238 m0 : 938.5 q0 : 34 MHB to RFQ → L = 1.12 m

LEBT (Proton) Element Amount Strength Length [cm] Bending Magnet 2 Θ = 90 ˚ Pair Solenoid 4 1.0 kG 30, 30 Solenoid 1 50 ESQ(Triplet) 3 2.0 kV 15 ,15 ,15 ESQ(doublet) 1.0kV 15,15 MHB 40.625 MHz . 81.250 MHz . 121.875 MHz . 24 Velocity Equalizer 40.625 MHz 10 Chopper 1 kV 15 □ Magnet strength for proton beam transport is weaker (~ 1/7) than Uranium’s

LEBT Pair solenoid FEMM code simulation

LEBT Solenoid FEMM code simulation

Charge stripper section (collimator) Collimators to prevent the damage on cryomodule Liquid Li Carbon stripper SCL1 Charge stripping section with matching section Horizontal and vertical width of collimator X [cm] Y [cm] 1st slit 0.6 2nd slit 0.8 3rd slit 0.5 1.0 4th slit 0.7 5th slit Collimation rate in each collimator in CS line Loss particle 77 78 79 80 81 % kW 2nd slit 0.145 0.084761 0.005 0.01 0.06 0.05 0.02 3rd slit 0.195 0.113989 0.025 0.04 0.065 4th slit 0.105 0.061378 0.03 0.015 5th slit 0.13 0.075992 0.035

Charge stripper section Energy straggling : 0.011 % rms (solid carbon) 2. SRIM calculation (straggling) Stripper Solid carbon ΔE (MeV/u) 0.14 E FWHM (MeV/u) 0.00209 Angle (mrad) 0.19 Angle FWHM (mrad) 0.45 SRIM 0.3 mg/cm2 (carbon foil) Energy loss : 0.14 MeV/u Energy straggling : 0.011 % rms Angular straggling : 0.19 mrad

Charge stripper section (solid carbon) The simulation of the stripping efficiency and straggling are required to estimate the effect of the solid carbon stripper. Charge stripping rate estimation → LISE ++ 0.3 mg/cm2 (carbon foil)