黑洞X射线双星的高频准周期振荡(HFQPO)与喷流(Jet)的 相关性

Slides:



Advertisements
Similar presentations
X-ray pulsars in wind-fed accretion systems 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Advertisements

MIT Workshop on Magnetized Accretion Disks Supported by: MIT-France Program CEA Saclay, France MIT Kavli Inst. for Astrophysics & Space Research MIT Dept.
Episodic magnetic jets as the central engine of GRBs Feng Yuan With: Bing Zhang.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Ron Remillard, MIT Primary Collaborator, Jeff McClintock CfA
XIV Advanced School on Astrophysics Topic III: Observations of the Accretion Disks of Black Holes and Neutron Stars III.2 X-ray States of Black Hole.
X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T. This presentation will.
INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space.
Radio Cores: Particle Accelerators and High-Energy Laboratories VLBI: Krichbaum et al. (1999) Courtesy Heino Falcke TeV neutrinos 511 keV annihilation.
Towards the Grand Unification of AGNs in Hierarchical Cosmologies Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C.S. Frenk January 30,
BH binaries. Black hole binaries High mass (few) Low-mass (majority) ULX – ultraluminous X-ray sources Most of low-mass are transients. Microquasars.
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
BH binaries.
OUTLINE X-RAY STATES & RADIO JETS (BLACK HOLES) Radio phenomenology vs accretion modes LUMINOSITY CORRELATIONS (BLACK HOLES) radio/X-ray NIR/X-ray dependence.
Neutron star low-mass X-ray binaries Rudy Wijnands Anton Pannekoek Institute for Astronomy University of Amsterdam 3 August 2015Lorentz center, Leiden.
Discovery and Evolution of a New Galactic Black Hole Candidate XTE J Discovery and Evolution of a New Galactic Black Hole Candidate XTE J
A toy model for HFQPOs in XRBs Ye Yong-Chun ( 叶永春 ), Wang Ding-Xiong( 汪定雄 ) Department of Physics, Huazhong University of Science and Technology, Wuhan,
In collaboration: D. Barret (CESR), M. Bursa & J. Horák (CAS), W. Kluzniak (CAMK), J. Miller (SISSA). We acknowledge the support of Czech grants MSM ,
Gabriel Török* Relating high-frequency QPOs and neutron-star EOS *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Reverberation effect in Quasi Periodic Oscillations in Black Hole Candidates. Nikolai Shaposhnikov 1,2,3 1 University of Maryland, Astronomy Department.
Light Curves These light curves were taken by the Swift Gamma-Ray Burst Explorer & Rossi X-Ray Timing Explorer Each graph plots the counts of x-rays with.
Timing and Spectral Properties of Neutron Star Low-Mass X-ray Binaries Sudip Bhattacharyya Department of Astronomy and Astrophysics Tata Institute of Fundamental.
Ramesh Narayan (McClintock, Shafee, Remillard, Davis, Li)
MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.
A Toy Model for 3:2 HFQPO Pairs in Black Hole Binaries XTE J and GRO J Ding-Xiong WANG( 汪定雄 ), Zhao-Ming GAN (speaker, 甘朝明 ), Chang-Yin.
Isolating the jet in broadband spectra of XBs Dave Russell niversity of Amsterdam In collaboration with: Fraser Lewis, Dipankar Maitra, Robert Dunn, Sera.
Timing Features of XTE J in 2003 March outburst Fan Zhang et al. (astro-ph/ ) --Possible Evidence for Accreting Blobs.
Pavel Bakala,Gabriel Török, Zdeněk Stuchlík and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Gabriel Török, P.Bakala, E. Šrámková, Z. Stuchlík, M. Urbanec Mass and spin of NS implied by models of kHz QPOs *Institute of Physics, Faculty of Philosophy.
On the X-ray origin in Quiescent Black Hole X-ray Binaries Hui Zhang ( 张惠 ) Shanghai Astronomical Observatory, Chinese Academy of Sciences Collaborators:
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Figs on this page: nasa.gov. Outline 1. Introduction: Quasi-periodic oscillations (QPOs) - Black-hole and neutron star binaries, accretion disks and QPOs.
Gabriel Török* On orbital models of kHz QPOs in neutron star binaries *Institute of Physics, Faculty of Philosophy and Science, Silesian University in.
Black Holes: Observations Lecture 2: BHs in close binaries Sergei Popov (SAI MSU)
Sawtooth-like Oscillations of Black Hole Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
Be/X-Ray 双星中的中子星自传演化 成忠群 南京大学 Contents 1. Introduction (1) Observed period gap for BeXBs (2) Possible interpretation by the authors 2. What.
The X-ray Universe 2008, Granada, May A Jet-Emitting Disk model for the microquasar broad band emission G. Henri Coll. P.O Petrucci, J. Ferreira,
Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing.
Gabriel Török* On orbital models of kHz QPOs *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13,
A new model for emission from Microquasar jets Based on works by Asaf Pe’er (STScI) In collaboration with Piergiorgio Casella (Southampton) March 2010.
Global Simulations of Time Variabilities in Magnetized Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
STRONG RESONANT PHENOMENA IN BLACK HOLE SYSTEMS Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13,
A Dynamic Model of Magnetic Coupling of a Black Hole with its surrounding Accretion Disk Huazhong University of Science & Technology ( , Beijing)
Measuring the Spins of Stellar-Mass Black Holes by Fitting the X-ray Continuum Spectrum Jeff McClintock Credit: A. Broderick & E. Mer Probing Strong Gravity.
Global MHD Simulations of State Transitions and QPOs in Black Hole Accretion Flows Machida Mami (NAOJ) Matsumoto Ryoji (Chiba Univ.)
RXTE Pursuit of Variability and X-ray States …plus a Few Fun Memories Ron Remillard, MIT Kavli Center for Astrophysics & collaborators (Jeff McClintock.
kHz QPOs of LMXBs Constrains on Pulsar Parameters Chengmin Zhang & Hongxing Yin National Astronomical Observatories, Beijing.
Recent Progress about kHz QPO and Spin in LMXB and their implications C.M. Zhang, H.X. Yin, Y. Yan, L.M. Song, F. Zhang National Astronomical Observatories,
Zdeněk Stuchlík, Gabriel Török, Petr Slaný Multi-resonant models of quasi-periodic oscillations Institute of Physics, Faculty of Philosophy and Science,
Lively Accreting Black Holes in X-ray Binaries Jeff McClintock Harvard-Smithsonian Center for Astrophysics Black Holes’ New Horizons Oaxaca, May 2016 
The Role of Magnetic Fields in Black Hole Accretion
eXTP Workshop Timing Ultraluminous X-ray Sources with eXTP
RXTE Spectral Observations of the Galactic Microquasar GRO J1655-40
Zhao-Ming Gan, Ding-Xiong Wang and Yang Li
Signs of the Blandford & Znajek mechanism in GRB afterglow lightcurves
Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1
Black Hole Event Horizon
Torus Oscillations in Accretion Disks and kHz QPOs
Correlation Time Scales of the X-ray Flux in Low Mass X-ray Binary
Toward understanding the X-ray emission of the hard state of XTE J
General Relativity in X-ray Astronomy Astrosat and Future Experiments
BH binaries.
Why only a small fraction of quasars are radio loud?
The origin nuclear X-ray emission in the nuclei of radio galaxy-FR Is
BH binaries.
Black Holes: Observations Lecture 2: BHs in close binaries
Difficulties with the QPOs resonance model
On the formation of the peculiar LMXB IGR J in Terzan 5
QPO in BHXRB HFQPO (50 to hundreds Hz) LFQPO (up to Hz) →
Presentation transcript:

黑洞X射线双星的高频准周期振荡(HFQPO)与喷流(Jet)的 相关性 汪定雄, 叶永春, 黄昌印 华中科技大学 2nd workshop on black hole accretion 2007 Beijing April 21-23

1. Introduction 2. A brief review of the BZMC Model 3. Correlation between jets and HFQPOs 4. Estimate the BH spin based on 3:2 QPO pairs 5. State Transition in BHXB and jet line in HID 6. Some puzzles in the evolving BHXBs

1. Introduction Four sources exhibit 3:2 pairs of HFQPOs in which three BHXBs and one BH transient are included. The jets are also observed in these sources. How to explain the correlation between HFQPOs and Jet?

Fig. 1 银河系16个黑洞双星的示意图 The Sun–Mercury distance (0.4 AU) is shown at the top.

Fig. 2 Four pairs of HFQPOs observed in three black–hole binary systems. The energy band is 6–30 keV.

BHXBs: GRO J1655-40 (450 and 300 Hz); XTE J1550-564 (276 and 184 Hz); GRS 1915+105 (168 and 113 Hz). BH Transient: H1743-322 (240 and 160 Hz). In addition, jets are observed in the above sources.

Fig. 3 喷流现象普遍出现类星体,微类星体和伽玛射线暴中.

Fig. 4 黑洞吸积盘 已成为类星体和微类星体高能辐射和喷流产生的标准模型.

The jets can be observed in hard states, but can not in soft states, and a jet line in HID divides the hard state from the soft state (Fender et al. 2004).

Fig. 5 A schematic of our simplified model for the jet-disk coupling in black hole binaries (From Fender et al. 2004).

Fig. 6. Hardness-Intensity diagram of the 2002/2003 outburst of GX 339-4 (From Belloni 2005).

A consistent interpretation for the state transitions in BHXBs remains controversial. Belloni et al. (1997a, b; 2000) : The transition between State C and States A/B is caused by the disappearance and reappearance of the inner accretion disk due to a disk instability mechanism.

(2) Livio et al. (2003) In one state, the accretion energy is dissipated locally to produce the observed disk luminosity. In another state the energy liberated in the accretion is converted efficiently into magnetic energy in the form of a magnetically dominated outflow or jet.

Questions: 1. Is there any correlation between HFQPOs with jets in BHXBs? 2. How to interpret the jet line in HID? These issues can be explained naturally based on BZMC model (Wang et al. 2003, 2004, 2005).

磁场的引入对提取黑洞的旋转能量和喷流的准直起到非常关键的作用; 确定黑洞吸积盘的磁场位形是一个关键问题

2. A brief review of the BZMC Model Fig. 7 Magnetic field Configuration with the BZ and MC processes

Energy and angular momentum are transferred from the BH to the disk by virtue of a large scale non-axisymmetric magnetic field (Wang et. 2003, 2005).

Screw instability (kink instability) of the magnetic field is invoked to determine the angular boundary of the open and closed magnetic field lines at the horizon: Two rotating hotspots are produced in the inner disk by the non-axisymmetric field.

Inner hotspot corresponds to the upper frequency of the HFQPO pair, arising from the peak value of transferred energy flux. Outer hotspot corresponds to the lower frequency of the HFQPO pair, arising from the screw instability.

3. Correlation between jets and HFQPOs The coexistence of the BZ and MC processes always accompanies the screw instability (Wang et al. 2004). Fig. 8 Critical line for the MC with BZ jet and without BZ jet in parameter space.

4.1 Estimate the BH spin based on 3:2 QPO pairs The upper and lower frequencies are expressed by

Table 1 The fitting results for 3:2 ratio in HFQPOs

Comparison of the estimated BH spins J1655-40: Authors Methods Spin Z97 X-ray continuum fitting 0.7-0.95 G01 X-ray continuum fitting 0.68-0.88 S06 X-ray continuum fitting 0.65-0.75 M06 X-ray continuum fitting 0.65-0.80 AK01 Resonance 0.2-0.67 W07 3:2 QPO pair 0.667-0.709 Z97 -- Zhang et al. 1997, ApJ, 482, L155, G01 --Cierlinski, 2001, MNRAS, 325, 1253 S06 -- Shafee et al. 2006, ApJ, 636, L113, M06-- McClintock et al. astro-ph/0606076, AK01--Abramowicz & Kluzniak, 2001, A&A, 374, L19 W07 -- Wang et al. 2007, ApJ, 657, 428,

4.2 Estimate BH mass and spin of H1743-322 H1743-322 is a BH transient with 3:2 HFQPO pair: (240 and 160 Hz), whose mass is uncertain. FIG. 9 The characteristic line of the 3:2 QPO pair (240, 160Hz) for H1743-322 in the parameter space.

From Fig. 9 we obtain the value ranges of the BH mass and spin as follows. Although the constraint is rather loose, it is a starting point for further study, and can be improved by observations.

4.3 Estimate BH spin in XTE J1859+226 based on one-component QPO (190Hz) FIG. 10 Two contours of corresponding to the lower and upper BH masses of XTE J1859+226.

Belloni et al (astro-ph0603210): The maximum QPO frequency is inversely proportional to the BH mass, this result is consistent with the hotspot’s angular velocity.

Belloni (2005): 5. State Transition in BHXB and jet line in HID The states are reduced to only two basic states, a hard state and a soft one. Jets are observed in hard states, but can not in soft states.. A hard state and a soft state are divided by a jet line in HID.

Scenario: State transition between a hard state and a soft based on the variation of the current distribution in the disk. From Ampere’s law and the magnetic field profile: we have

A magnetic field of can be produced by the fluctuations in densities of the plasma coming from a companion star: where

Timescale estimate

State transition can be realized based on the variation of the current distribution Fig. 12

6. Some puzzles in the evolving BHXBs (1) Why the evolving paths of BHXBs in HID are always anti-clockwise? (2) Why the Lorentz factor increase abruptly before the jets disappear? (3) What is the real reason for setting the large scale magnetic field configurations in BH accretion?

There is a long way to go.

References Abramowicz, M. A., & Kluzniak, W., 2001, A&A, 374, L19 (AK01) Abramowicz, M. A., & Kluzniak, W., 2004, in AIP Conf. Proceedings, 714, X-ray Timing 2003: Rossi and Beyond, ed. P Kaaret, F K. Lamb, J H. Swank. (NY: AIP), 21 (AK04) Aschenbach, B., et al. 2004a, A&A, 417, 71 (A04a) —. 2004b, A&A, 425, 1075 (A04b) —. 2006, updated version of a talk given at the 2005 Frascati Workshop, Vulcano, Italy, May 23 – 28, astro-ph/0603193 (A06) Belloni, T., Mendez, M., King, A. R., van der Klis, M., & van Paradijs, J. 1997a, ApJ, 479, L145 —.1997b, ApJ, 488, L109 Belloni, T., Klein-Wolt, M., Mendez, M., van der Klis, M., & van Paradijs, J. 2000, A&A, 355, 271 Belloni, T., 2005, Proceedings of COSPAR Colloquium "Spectra & Timing of Compact X-ray Binaries," January 17-20, 2005, Mumbai, India, astro-ph/0507556 (B05) Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433 Blandford, R. D., 1999, in ASP Conf. Ser. 160, Astrophysical Discs: An EC Summer School, ed. J. A. Sellwood & J. Goodman (San Francisco: ASP), 265

Blandford, R. D., 2002, Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology Proceedings of the MPA/ESO/, p. 381. Bradt, H. V., Rothschild, R. E., & Swank, J. H., 1993, A&AS, 97, 355 Brown, G. E., et al. 2000, New Astronomy 5, 191 Bower, G. C., Falcke, H., Herrnstein, R. M., et al. 2004, Science, 304, 704 Bursa, M., 2005, in Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, ed. S. Hledík & Z. Stuchlík (Silesian University in Opava, Czech), 39 (Br05) Davis, S. W., Done, C., & Blaes, O. M., 2006, ApJ, 647, 525 (D06) Fender, R.P., Belloni, T., & Gallo, E., 2004, MNRAS, 355, 1105 (FBG04) Gierlinski, et al. 2001, MNRAS, 325, 1253 (G01) Homan, J., et al. 2005, ApJ, 623, 383 Kalemci, E. et al. 2006, ApJ, 640, 55 Kato, S., & Fukue, J., astro-ph/0608578 (KF06) Li, L. -X., 2000a, ApJ, 533, L115 —. 2000b, ApJ, 531, L111 —. 2002, ApJ, 567, 463

Livio, M., Pringle, J. E., & King, A. R., 2003, ApJ, 593, 184 (LPK03) Ma, R.-Y., Wang, D.-X., & Zuo, X.-Q., 2006, A&A, 453, 1 McClintock, J E, & Remillard R A 2006. In Compact Stellar X-ray Sources, ed. WHG Lewin, M van der Klis, pp. 157–214. Cambridge: Cambridge University Press. (astro-ph/0306213) (MR06) McClintock, J E et al. astro-ph/0606076 (M06) Middleton, M., et al. astro-ph/0601540 (MD06) Mirabel, I. F., & Rodriguez L. F., 1998, Nat, 392, 673 —. 1999, ARA&A, 37, 409 Miller, J. M. et al. 2001, ApJ, 563, 928 Page, D. N., & Thorne, K. S. 1974, ApJ, 191, 499 Remillard, R. A., et al., 1999, ApJ, 522, 397 Remillard, R. A., et al., 2002, ApJ, 564, 962 Remillard, R. A., & Muno, M. P., ApJ, 2002, 580, 1030 (RM02) Remillard, R. A., et al. 2006, ApJ, 637, 1002 Remillard, R. A., & McClintock J. E., 2006, ARA&A, 44, 49 (RM06) Shafee, R., et al. ApJ, 2006, 636, L113 (S06) Strohmayer, T. E., 2001a, ApJ, 552, L49 —. 2001b, ApJ, 554, L169 Thorne, K. S. 1974, ApJ, 191, 507 Torok, G., 2005, Astron. Nachr., 326, 9, 856

Wagoner, R. V. , Silbergleit, A. S. , & Ortega-Rodriguez, M Wagoner, R. V., Silbergleit, A. S., & Ortega-Rodriguez, M. 2001, ApJ, 559, L25 Wang, D.-X., Xiao K., & Lei W.-H. 2002, MNRAS, 335, 655 (W02) Wang, D.-X., et al., 2003a, ApJ, 595, 109 (W03) —. 2003b, MNRAS, 344, 473 —. 2004, ApJ, 601, 1031 (W04) Wang, et al., MNRAS, 2005, 359, 36 (W05) Zhang, S. N., Cui, W., & Chen, W., 1997, ApJ, 482, L155 (Z97)