Quantum Theory and the Electronic Structure of Atoms

Slides:



Advertisements
Similar presentations
Chapter 4 STRUCTURE OF THE ATOM.
Advertisements

Quantum Theory and the Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
Alright class we are going back to quantum numbers.
QUANTUM MECHANICS -C. FAULK CHEMISTRY II Electron clouds Although we cannot know how the electron travels around the nucleus we can know where it spends.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Quantum Theory and the Electronic Structure of.
Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 7-1 Electronic Structure of Atoms Chapter 6 Copyright © The.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter 7 Part 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Quantum Theory and the Electronic Structure.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Periodicity & Atomic Structure Chapter 5. 2 The Periodic Table01 The periodic table is the most important organizing principle in chemistry. Chemical.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Quantum Theory and the Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Quantum Theory and the Electronic Structure of Atoms Chapter 6.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Quantum Theory and the Electronic Structure of.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter 7 Quantum Theory and the Electronic Structure of Atoms.
Electrons. The Modern Atom Not along after Rutherford established that the positive charge in the atom resided in the nucleus. Scientists began putting.
General Chemistry 2 CHEM 102 Syllabus. InstructorDr Mohamed Ibrahim Attia Credits: 4 Office:
Quantum Theory and the Electronic Structure of Atoms Part 2 Unit 4, Presentation 1.
Quantum Theory and the Electronic Structure of Atoms Chapter 6.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
Order of orbitals (filling) in multi-electron atom 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s Aufbau Principle: an electron occupies the.
Ch 4 Arrangement of Electrons in atoms ELECTROMAGNETIC RADIATION subatomic particles (electron, photon, etc) have both PARTICLE and WAVE properties Light.
The Development of A New Atomic Model
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 7.1 From Classical Physics to Quantum Theory  7.3 Bohr’s Theory of the Hydrogen Atom  7.6 Quantum Numbers  7.7 Atomic Orbital's  7.8 Electron Configurations.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
1 2 3 Orbitals and the Periodic Table Orbitals grouped in s, p, d, and f orbitals (sharp, principle, diffuse, and fundamental(fine))Orbitals grouped.
The Quantum Mechanical Atom Chapter 8. Electron Distribution When 2 or more atoms join to form a compound, the nuclei of the atoms stay relatively far.
The Aufbau Principle.  Assumes that all atoms have the same type of orbitals that the Hydrogen atom does  As Protons are added to the nucleus to build.
Chapter 4 Electrons In Atoms.
Quantum Theory and the Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
The Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
Arrangement of Electrons in Atoms
Chapter 5: Arrangement of Electrons in Atoms
Electrons In Atoms.
Quantum Theory and the Electronic Structure of Atoms
Electronic Structure of Atoms
Modern Atomic Theory.
Order of orbitals (filling) in multi-electron atom
Atomic Structure and Periodicity
Modern Atomic Theory (a.k.a. the electron chapter!)
Quantum Theory and the Electronic Structure of Atoms
Quantum Theory and the Electronic Structure of Atoms
Electron Configurations
Chapter 6 – Electronic Structure of Atoms
The Quantum Model Chapter 4.
Electrons in Atoms Chapter 5.
Chapter 5 Introductory Assignment
Arrangement of Electrons in Atoms
Electrons in Atoms Chapter 5.
Electron Configuration
Atomic Structure and Periodicity Chapter 7
Modern Atomic Theory.
Quantum Theory and the Electronic Structure of Atoms
Atomic Structure and Periodicity
Development of a New Atomic Model
Quantum Theory and the Electronic Structure of Atoms
Presentation transcript:

Quantum Theory and the Electronic Structure of Atoms Chapter 5

Properties of Waves Wavelength (l) is the distance between identical points on successive waves. Amplitude is the vertical distance from the midline of a wave to the peak or trough. 7.1

The speed (u) of the wave = l x n Properties of Waves Frequency (n) is the number of waves that pass through a particular point in 1 second (Hz = 1 cycle/s). The speed (u) of the wave = l x n 7.1

Speed of light (c) in vacuum = 3.00 x 108 m/s Maxwell (1873), proposed that visible light consists of electromagnetic waves. Electromagnetic radiation is the emission and transmission of energy in the form of electromagnetic waves. Speed of light (c) in vacuum = 3.00 x 108 m/s All electromagnetic radiation l x n = c 7.1

7.1

l x n = c l = c/n l = 3.00 x 108 m/s / 6.0 x 104 Hz l = 5.0 x 103 m A photon has a frequency of 6.0 x 104 Hz. Convert this frequency into wavelength (nm). Does this frequency fall in the visible region? l n l x n = c l = c/n l = 3.00 x 108 m/s / 6.0 x 104 Hz l = 5.0 x 103 m l = 5.0 x 1012 nm Radio wave 7.1

Mystery #1, “Black Body Problem” Solved by Planck in 1900 Energy (light) is emitted or absorbed in discrete units (quantum). E = h x n Planck’s constant (h) h = 6.63 x 10-34 J•s 7.1

Photon is a “particle” of light Mystery #2, “Photoelectric Effect” Solved by Einstein in 1905 hn Light has both: wave nature particle nature KE e- Photon is a “particle” of light hn = KE + BE KE = hn - BE 7.2

E = 6.63 x 10-34 (J•s) x 3.00 x 10 8 (m/s) / 0.154 x 10-9 (m) When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with the photons if the wavelength of the X rays is 0.154 nm. E = h x n E = h x c / l E = 6.63 x 10-34 (J•s) x 3.00 x 10 8 (m/s) / 0.154 x 10-9 (m) E = 1.29 x 10 -15 J 7.2

Line Emission Spectrum of Hydrogen Atoms 7.3

7.3

Chemistry in Action: Element from the Sun In 1868, Pierre Janssen detected a new dark line in the solar emission spectrum that did not match known emission lines Mystery element was named Helium In 1895, William Ramsey discovered helium in a mineral of uranium (from alpha decay).

Chemistry in Action: Electron Microscopy le = 0.004 nm STM image of iron atoms on copper surface

Schrodinger Wave Equation In 1926 Schrodinger wrote an equation that described both the particle and wave nature of the e- Wave function (Y) describes: . energy of e- with a given Y . probability of finding e- in a volume of space Schrodinger’s equation can only be solved exactly for the hydrogen atom. Must approximate its solution for multi-electron systems. 7.5

QUANTUM NUMBERS The shape, size, and energy of each orbital is a function of 3 quantum numbers which describe the location of an electron within an atom or ion n (principal) ---> energy level l (orbital) ---> shape of orbital ml (magnetic) ---> designates a particular suborbital The fourth quantum number is not derived from the wave function s (spin) ---> spin of the electron (clockwise or counterclockwise: ½ or – ½)

Schrodinger Wave Equation Y = fn(n, l, ml, ms) principal quantum number n n = 1, 2, 3, 4, …. distance of e- from the nucleus n=1 n=2 n=3 7.6

e- density (1s orbital) falls off rapidly Where 90% of the e- density is found for the 1s orbital e- density (1s orbital) falls off rapidly as distance from nucleus increases 7.6

Schrodinger Wave Equation Y = fn(n, l, ml, ms) angular momentum quantum number l for a given value of n, l = 0, 1, 2, 3, … n-1 l = 0 s orbital l = 1 p orbital l = 2 d orbital l = 3 f orbital n = 1, l = 0 n = 2, l = 0 or 1 n = 3, l = 0, 1, or 2 Shape of the “volume” of space that the e- occupies 7.6

Types of Orbitals (l) s orbital p orbital d orbital

l = 0 (s orbitals) l = 1 (p orbitals) 7.6

p Orbitals 3py orbital this is a p sublevel with 3 orbitals These are called x, y, and z There is a PLANAR NODE thru the nucleus, which is an area of zero probability of finding an electron 3py orbital

l = 2 (d orbitals) 7.6

f Orbitals For l = 3, f sublevel with 7 orbitals

Schrodinger Wave Equation Y = fn(n, l, ml, ms) magnetic quantum number ml for a given value of l ml = -l, …., 0, …. +l if l = 1 (p orbital), ml = -1, 0, or 1 if l = 2 (d orbital), ml = -2, -1, 0, 1, or 2 orientation of the orbital in space 7.6

ml = -1 ml = 0 ml = 1 ml = -2 ml = -1 ml = 0 ml = 1 ml = 2 7.6

Schrodinger Wave Equation Y = fn(n, l, ml, ms) spin quantum number ms ms = +½ or -½ ms = +½ ms = -½ 7.6

Schrodinger Wave Equation Y = fn(n, l, ml, ms) Existence (and energy) of electron in atom is described by its unique wave function Y. Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers. Each seat is uniquely identified (E, R12, S8) Each seat can hold only one individual at a time 7.6

7.6

Schrodinger Wave Equation Y = fn(n, l, ml, ms) Shell – electrons with the same value of n Subshell – electrons with the same values of n and l Orbital – electrons with the same values of n, l, and ml How many electrons can an orbital hold? If n, l, and ml are fixed, then ms = ½ or - ½ Y = (n, l, ml, ½) or Y = (n, l, ml, -½) An orbital can hold 2 electrons 7.6

How many 2p orbitals are there in an atom? If l = 1, then ml = -1, 0, or +1 2p 3 orbitals l = 1 How many electrons can be placed in the 3d subshell? n=3 If l = 2, then ml = -2, -1, 0, +1, or +2 3d 5 orbitals which can hold a total of 10 e- l = 2 7.6

1 3 5 7 2 6 10 14 How many electrons can be in a sublevel? Remember: A maximum of two electrons can be placed in an orbital. s orbitals p orbitals d orbitals f orbitals Number of orbitals 1 3 5 7 Number of electrons 2 6 10 14

Order of orbitals (filling) in multi-electron atom 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s 7.7

Outermost subshell being filled with electrons 7.8

Why are d and f orbitals always in lower energy levels? d and f orbitals require LARGE amounts of energy It’s better (lower in energy) to skip a sublevel that requires a large amount of energy (d and f orbtials) for one in a higher level but lower energy This is the reason for the diagonal rule! BE SURE TO FOLLOW THE ARROWS IN ORDER!

in the orbital or subshell Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom. number of electrons in the orbital or subshell 1s1 principal quantum number n angular momentum quantum number l Orbital diagram 1s1 H 7.8

Shorthand Notation Step 1: Find the closest noble gas to the atom (or ion), WITHOUT GOING OVER the number of electrons in the atom (or ion). Write the noble gas in brackets [ ]. Step 2: Find where to resume by finding the next energy level. Step 3: Resume the configuration until it’s finished.

What is the electron configuration of Mg? Mg 12 electrons 1s < 2s < 2p < 3s < 3p < 4s 1s22s22p63s2 2 + 2 + 6 + 2 = 12 electrons Abbreviated as [Ne]3s2 [Ne] 1s22s22p6 What are the possible quantum numbers for the last (outermost) electron in Cl? Cl 17 electrons 1s < 2s < 2p < 3s < 3p < 4s 1s22s22p63s23p5 2 + 2 + 6 + 2 + 5 = 17 electrons Last electron added to 3p orbital n = 3 l = 1 ml = -1, 0, or +1 ms = ½ or -½ 7.8

Energy of orbitals in a multi-electron atom Orbital Diagrams Energy of orbitals in a multi-electron atom n=3 l = 2 n=3 l = 1 n=3 l = 0 n=2 l = 1 n=2 l = 0 Energy depends on n and l n=1 l = 0 7.7

“Fill up” electrons in lowest energy orbitals (Aufbau principle) ? ? Li 3 electrons Be 4 electrons C 6 electrons B 5 electrons B 1s22s22p1 Be 1s22s2 Li 1s22s1 H 1 electron He 2 electrons He 1s2 H 1s1 7.7

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins (Hund’s rule). F 9 electrons Ne 10 electrons C 6 electrons O 8 electrons N 7 electrons Ne 1s22s22p6 C 1s22s22p2 N 1s22s22p3 O 1s22s22p4 F 1s22s22p5 7.7

Paramagnetic Diamagnetic unpaired electrons all electrons paired 2p 2p 7.8

7.8

Exceptions to the Aufbau Principle Remember d and f orbitals require LARGE amounts of energy If we can’t fill these sublevels, then the next best thing is to be HALF full (one electron in each orbital in the sublevel) There are many exceptions, but the most common ones are d4 and d9 For the purposes of this class, we are going to assume that ALL atoms (or ions) that end in d4 or d9 are exceptions to the rule. This may or may not be true, it just depends on the atom.

Exceptions to the Aufbau Principle d4 is one electron short of being HALF full In order to become more stable (require less energy), one of the closest s electrons will actually go into the d, making it d5 instead of d4. For example: Cr would be [Ar] 4s2 3d4, but since this ends exactly with a d4 it is an exception to the rule. Thus, Cr should be [Ar] 4s1 3d5. Procedure: Find the closest s orbital. Steal one electron from it, and add it to the d.

Write the shorthand notation for: Cu W Au Try These! Write the shorthand notation for: Cu W Au [Ar] 4s1 3d10 [Xe] 6s1 4f14 5d5 [Xe] 6s1 4f14 5d10

Keep an Eye On Those Ions! Electrons are lost or gained like they always are with ions… negative ions have gained electrons, positive ions have lost electrons The electrons that are lost or gained should be added/removed from the outermost energy level (not the highest orbital in energy!)

Keep an Eye On Those Ions! Tin Atom: [Kr] 5s2 4d10 5p2 Sn+4 ion: [Kr] 4d10 Sn+2 ion: [Kr] 5s2 4d10 Note that the electrons came out of the highest energy level, not the highest energy orbital!