Neutrinoastrophysik bei niedrigen Energien BOREXINO and LAGUNA

Slides:



Advertisements
Similar presentations
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Advertisements

Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
New Large* Neutrino Detectors
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Low Energy Neutrino Astrophysics
LAGUNA and Neutrino Physics NOW 2008 Lothar Oberauer TU München, Germany.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Liquid Scintillation Detectors for High Energy Neutrinos John G. Learned Department of Physics and Astronomy, University of Hawaii See: arXiv:
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
G. Testera (INFN Genoa- Italy ) on behalf of the Borexino collaboration Low energy solar neutrino signals in Borexino Kurchatov Inst. (Russia) Dubna JINR.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Neutrino Oscillations at Homestake from Chlorine to the Megadetector Ancient Origins of the Question ~1860 Darwin publishes “On The Origin of Species”-
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Search for Sterile Neutrino Oscillations with MiniBooNE
Θ 13 and CP-Violation in the Lepton Sector SEESAW25 Institut Henri Poincaré, Paris Caren Hagner Universität Hamburg SEESAW25 Institut Henri Poincaré, Paris.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Cosmic muon signal and its seasonal modulation at Gran Sasso with the Borexino detector Davide D’Angelo for the Borexino Collaboration Università degli.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Solar and geo neutrinos  in Borexino: summary of the PHASE 1 measurements and (two) new results Gemma Testera - INFN Genova (on behalf of the Borexino.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
Solar Neutrinos on the beginning of 2017
NEUTRINO OSCILLATION MEASUREMENTS WITH REACTORS
IPHC-IN2P3/CNRS Strasbourg
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
Solar and Geo Neutrino Physics with Borexino RICAP
Outline 1. Introduction & Overview 2. The experiment result 3. Future
Physics with the ICARUS T1800 detector
Solar neutrino detection in Borexino
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
New Results from the Borexino Neutrino Experiment
Solar Neutrino Problem
Search for sterile neutrinos with SOX: Monte Carlo studies of the experiment sensitivity Davide Basilico 1st year Workshop – 11/10/17 Tutors: Dott. Barbara.
T2KK sensitivity as a function of L and Dm2
Status of Neutron flux Analysis in KIMS experiment
Daya Bay Neutrino Experiment
Impact of neutrino interaction uncertainties in T2K
Davide Franco for the Borexino Collaboration Milano University & INFN
Atmospheric n’s in a large LAr Detector
Neutrino Magnetic Moment : Overview
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Yifang Wang Institute of High Energy Physics
DUNE as the Next-Generation Solar Neutrino Experiment
Low Energy Neutrino Astrophysics
Presentation transcript:

Neutrinoastrophysik bei niedrigen Energien BOREXINO and LAGUNA Astroteilchenphysik in Deutschland, February 2010 Zeuthen DESY Lothar Oberauer, TUM, Physik-Department Forschungsbereich Kern- Teilchen- Astrophysik Institut für experimentelle Astroteilchenphysik

Content New results from BOREXINO Prospects for solar neutrino spectroscopy Prospects for low energy neutrino astronomy Status of LAGUNA and LENA

The dominating solar pp - cycle H. Bethe W. Fowler pp - 1 pp -2 pp -3

The sub-dominant solar CNO - cycle …dominates in stars with more mass as our sun… =>Large astrophysical relevance Measurement of CNO neutrinos = determination of inner solar metallicity

Solar Neutrinos Neutrino Energy in MeV Scintillator BOREXINO Water Cherenkov L. Oberauer, TUM

BOREXINO Neutrino electron scattering n e -> n e Liquid scintillator technology (~300t): Low energy threshold (~60 keV) Good energy resolution (~ 5% @ 1 MeV) very low background Sensitivity on sub-MeV neutrinos Online since May 16th, 2007 L. Oberauer, TUM

Neutrino elastic scattering off electrons Cross section for ne is larger (factor ~5) as for nm,t Expected rate without neutrino mixing ~ 74 counts per day and 100t target Expected rate with neutrino mixing (MSW-LMA) ~ 48 c/(d 100 t) L. Oberauer, TUM

BOREXINO in the Italian Gran Sasso Underground Laboratory in the mountains of Abruzzo, Italy, ~120 km from Rome Laboratori Nazionali del Gran Sasso LNGS Shielding ~3500 m.w.e External Labs Borexino Detector and Plants

BOREXINO Detector layout Stainless Steel Sphere: 2212 PMTs + concentrators 1350 m3 Scintillator: 270 t PC+PPO in a 150 mm thick nylon vessel Water Tank: g and n shield m water Č detector 208 PMTs in water 2100 m3 Nylon vessels: Inner: 4.25 m Outer: 5.50 m Excellent shielding of external background Increasing purity from outside to the central region Carbon steel plates L. Oberauer, TUM

Results on solar 7Be neutrinos Counting rate on solar 7Be-neutrinos: 49 ± 3stat ± 4sys /(d 100t) L. Oberauer, TUM

Results on solar 8B - neutrinos No neutrino mixing neutrino mixing plus (MSW) effect New data for solar 8B neutrinos L. Oberauer, TUM

Systematic uncertainties Calibration with radioactive sources (completed in 2009) Study of response function (e.g. gamma quenching, kb – parameter…) Final systematic uncertainty on 7Be neutrino flux ~ 5% L. Oberauer, TUM

Implications of solar 7Be neutrino result Borexino exp. result: 49 ± 3stat ± 4sys / (d 100t) Solar model (high metallicity, neutrino mixing, MSW): 48 ± 4 / (d 100t) Solar model (low metallicity, neutrino mixing, MSW): 44 ± 4 / (d 100t) Solar model, but no neutrino mixing: 74 ± 4 / (d 100t) Clear confirmation of neutrino mixing and MSW L. Oberauer, TUM

Implications of solar 7Be-neutrino result f = measured / expected (solar model, MSW) Before Borexino fBe = After Borexino fBe = New constraints on pp- and CNO-fluxes from BOREXINO and all other solar neutrino experiments => L. Oberauer, TUM

CNO contribution to solar energy generation Without solar luminosity constraint With solar luminosity constraint CNO contribution to solar energy generation < 5.4 % (90 % cl) L. Oberauer, TUM

Correlation between constraints on pp- and CNO- fluxes Borexino result and solar luminosity constraint fCNO < 4.8 (90 %cl) L. Oberauer, TUM

Survival probability at Earth for solar ne as function of their energy Measurements and expectations (MSW effect) Borexino L. Oberauer, TUM

Prospects of BOREXINO Improvement of systematical uncertainties 7Be flux measurement at < 5 % total uncertainty 8B flux measurement with increased statistics Measurement of pep and CNO-neutrinos (if 11C event rejection and purity allows…) ne measurement by ne p -> e+ n => Geo neutrinos & reactor neutrinos Supernova neutrinos (~100 events) for a galactic SN type II , limits on magnetic moment… L. Oberauer, TUM

New Analysis of SNO phases I and II Threshold at 3.5 MeV (nucl-ex:09102984) L. Oberauer, TUM

Two flavor neutrino oscillation hypothesis analysis Global fit including: Solar neutrino experimental results (SNO, Cl, Gallex/GNO, Sage, Borexino, SK I & II) KamLAND reactor neutrino data (SNO collaboration: nucl-ex:09102984) L. Oberauer, TUM

Three flavor neutrino oscillation analysis nucl-ex:09102984 L. Oberauer, TUM

Three flavor neutrino oscillation analysis Current best parameter values from solar neutrino experiments and KamLAND Q12 = (34.06 + 1.16 – 0.84) degrees Dm212 = (7.59 + 0.20 – 0.21) x 10-5 eV2 Three flavor neutrino oscillation analysis sin2Q13 = (2.00 + 2.09 - 1.63) x 10-2 Limit on Q13: sin2Q13 < 0.057 (95% cl) nucl-ex:09102984 L. Oberauer, TUM

Prospects of low energy neutrino astronomy in Europe 3 large detector types are proposed 0.4 Mt Water Cherenkov (Memphis) 100 kt Liquid Argon (Glacier) 50 kt Liquid Scintillator (LENA) LAGUNA (Large Apparatus for Grand Unification and Neutrino Astrophysics): European funded FP7 design study for a future underground facility in Europe (report to be completed in 2010) L. Oberauer, TUM

LAGUNA Consortium - Italy

Low Energy Neutrino Astronomy – LENA L. Oberauer1, F. v. Feilitzsch1, M. Göger-Neff1, Y. Bezrukov10, A. Sherpukov9, C. Hagner2, J. Jochum3, T. Lachenmaier1,4, T. Lewke1, M. Lindner5, E. Kokko12, K. Loo12, J. Maalampi12 ,T. Marrodán Undagoitia7, G. Nujiten11,Q. Meindl1, R. Möllenberg1, J. Peltoniemi1,4, W. Potzel1, T. Risikko12, K. Rummukainen13, A. Stahl8, M. Tippmann1, C. Traunsteiner1, W. Trzaska6, J. Winter1, M. Wurm1 1 Technische Universität München, Physikdepartment E15, James-Franck-Str. 1, 85748 Garching 2 Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg 3 Universität Tübingen, Physikalisches Institut, Auf der Morgenstelle 14, 72067 Tübingen 4 The Cluster of Excellence for Fundamental Physics, „Origin and Structure of the Universe“, Boltzmannstr. 2, 85748 Garching (Germany) 5 Max-Planck-Institut für Kernphysik, Am Saupferchweg 1, 69117 Heidelberg (Germany) 6 University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland) 7 Universität Zürich, Physik-Insitut, Winterthurstr. 189, 8057 Zürich (Switzerland) 8 RWTH Aachen, III. Physikalisches Institut, Physikzentrum, 52056 Aachen (Germany) 9Moscow State University (Russia) 10Institute for Nuclear Research, Moscow, Russia 11Rockplan, Helsinki (Finland) 12University Oulu, Oulu (Finland) 13University of Helsinki (Finland) + collaboration with APC, CNRS, Paris (France) for common development MEMPHIS/LENA

LENA Physics Goals Proton Decay Diffuse Supernova Neutrino Background Galactic Supernova Burst Long baseline neutrino oscillations Solar Neutrinos Geo neutrinos Reactor neutrinos Atmospheric neutrinos Dark Matter indirect search L. Oberauer, TUM

~ 50 kt Liquid Scintillator L. Oberauer, TUM

LENA and proton decay High sensitivity to p -> K n (eff. ~ 68% instead 6% in SK t ~ 5 x 1034 y) Sensitive to a variety of decay channels “invisible” modes, e.g. n -> n n n For e.g. p -> e+ p0 we expect ~ 1033 y (work in progress) T. Marrodan et al., Phys. Rev. D72, 075014 (2005) L. Oberauer, TUM

LENA and the Diffuse Supernova Background Excellent background rejection (nep->e+n) Energy window 10 to 30 MeV. High efficiency (100% with 50 kt target) High discovery potential in LENA ~2 to 20 events per year are expected (model dependent) M. Wurm et al., Phys.Rev.D 75 (2007) 023007 L. Oberauer, TUM

LENA and a Galactic Supernova Burst Antielectron n spectrum with high precision Electron n flux with ~ 10 % precision Total flux via neutral current reactions Separation of SN models Spectroscopy of all n flavors Time evolution of neutrino burst Details of SN gravitational collapse Chance to separate low/high Q13 and mass hierarchy (normal/inverted) Coincidence with gravitational wave detectors L. Oberauer, TUM

LENA and long baseline neutrino oscillations Separation between e- and m-like events Pulse shape discrimination (risetime, width) Track reconstruction Muon decay m -> e n n Work in progress electrons (1.2 GeV) muons (1.2 GeV) L. Oberauer, TUM

Study CERN – LENA at Pyhäsalmi (Finland) CERN - Pyhäsalmi 2288 km 5 years nu + 5 years anti-nu 1. Maximum @ 4.2 GeV Wide band beam 1 – 6 GeV 1.5 MW power Sensitivity on theta_13, CP-parameter, mass hierarchy J. Peltoniemi, Simulations of neutrino oscillations for a wide band beam from CERN to LENA, arXiv:0911.4876v1 [hep-ex] L. Oberauer, TUM

CP – violating parameter Detection signifigance (chi) CP – violating parameter preliminary > 3 sigma Log (osc. Amplitude) L. Oberauer, TUM

preliminary L. Oberauer, TUM

LENA and Solar Neutrinos High statistics in 7-Be (~ 5400 events per day) Search for small time fluctuations CNO and pep n (~ 360 events per day) Very sensitive test of MSW effect CC and NC measurements of 8-B Search for spectrum deformation Search for non-standard n interactions Search for solar ne -> ne transitions L. Oberauer, TUM

LENA and Geo-neutrinos LENA is the only detector within Laguna able to determine the geo neutrino flux In LENA we expect between 300 to 3000 events per year (“best bet” ~ 1500 / year) Good signal / background ratio most significant contribution can be subtracted statistically Separation of geological models L. Oberauer, TUM

LENA and Reactor neutrinos At Frejus ~ 17,000 events per year High precision on solar oscillation parameter: Dm212 ~ 1% Q12 ~ 10% S.T. Petcov, T. Schwetz, Phys. Lett. B 642, (2006), 487 J. Kopp et al., JHEP 01 (2007), 053 L. Oberauer, TUM

Pre-feasibility study for LENA at Pyhäsalmi (TUM and company Rockplan, Finland) Depth at 1400 m – 1500 m possible ! Geological study completed Vertical detector position Logistics (Vent, Electricity, etc.) considered Construction time of cavern ~ 4 years 1st costs estimate for the whole project Tank construction plan (accomplished April 2010) L. Oberauer, TUM

favoured option: + Tank Construction: 8 years L. Oberauer, TUM

Conclusions Solar neutrino experiments very successful Strong impact on neutrino oscillation parameter Precise determination of solar nuclear fusion processes Missing CNO-neutrinos -> determination of solar inner metallicity Geo neutrinos (stay tuned !) Prospects (Large detectors like LENA) in this field & proton decay and long baseline experiments LAGUNA design study accomplished in 2010 L. Oberauer, TUM