Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey Vladimir G. Tyuterev Infrared spectroscopy of methane: Empirical line lists within the 1-2 mm region
Methane Atmospheric Production Greenhouse gas Fossil fuels GWP = 34 over 100 yrs 12.4 yr lifetime Production Fossil fuels Livestock farming Landfill
Methane - properties Atmospheric Production Astrophysical Greenhouse gas GWP = 34 over 100 yrs 12.4 yr lifetime Production Fossil fuels Livestock farming Landfill Astrophysical Solar system Jupiter and Titan Sub-stellar environments Hot Jupiters Exoplanets Brown Dwarfs Computational modelling Quantum number assignment Spectral prediction
Methane - properties Atmospheric Production Astrophysical Greenhouse gas GWP = 34 over 100 yrs 12.4 yr lifetime Production Fossil fuels Livestock farming Landfill Astrophysical Solar system Jupiter and Titan Sub-stellar environments Hot Jupiters Exoplanets Brown Dwarfs Computational modelling Quantum number assignment Spectral prediction
Methane - properties Exoplanets/ Brown Dwarfs Planets M Dwarf Stars The Sun - 5800 K (e.g., CN, OH, CH, NH) Sunspots - 3200 K (e.g., H2O, TiO) EARTH – 296 K HITRAN database HITEMPA Exoplanets/ Brown Dwarfs Planets M Dwarf Stars Stars H2O NH3 CH4 8000 7000 6000 5000 4000 3000 2000 1000 Diatomic Molecules H+ Polyatomic Molecules
Methane - properties Spectroscopic IR active fundamental Td symmetry IR active fundamental vibrations have T2 symmetry Bands appear as polyads n1 n2 n3 n4 3025 cm-1 1583 cm-1 3157 cm-1 1367 cm-1
Methane - properties Spectroscopic IR active fundamental Td symmetry IR active fundamental vibrations have T2 symmetry Bands appear as polyads A. Nikitin et al. PCCP, 2013, 15, 10071 n1 n2 n3 n4 3025 cm-1 1583 cm-1 3157 cm-1 1367 cm-1
Experimental Spectrometer Scans Tube furnace InSb detector CaF2 windows 0.02 cm-1 resolution Quartz-halogen source Scans 600 per sample 600 per background Tube furnace Between 300-1000 K 100 Torr of CH4
Experimental Spectrometer Scans Tube furnace InSb detector CaF2 windows 0.02 cm-1 resolution Scans 600 per sample 600 per background Tube furnace Between 300-1000 K 100 Torr of CH4
spectra
Empirical Lower state energies Pick line lists Calibrate to HITRAN Frequency Intensity
Empirical Lower state energies Pick line lists Calibrate to HITRAN Frequency Intensity Beer-Lambert Law Line strength 𝜏=𝐼/ 𝐼 0 =exp − 𝑺 ′ 𝑔 𝜈− 𝜈 0 𝑵𝒍 𝑺 ′ = 2 𝜋 2 𝝂 𝑺 𝑱 ′ 𝑱 ′′ 3 𝜀 0 ℎ 𝑐 𝑸 𝑻 exp − 𝑬 ′′ 𝑘𝑻 1− exp − ℎ𝝂 𝑘𝑻
Empirical Lower state energies “8-temperature method” “2-temperature method” A. Campargue et al. JQSRT, 2013, 118 𝑆 ′ 𝑆 0 ′ = 𝑄 0 𝑄 exp 𝑬 ′′ 𝑘 𝑇 0 − 𝑬 ′′ 𝑘𝑇 1− exp − ℎ𝜈 𝑘𝑇 1− exp − ℎ𝜈 𝑘 𝑇 0
Empirical Lower state energies Tetradecad Icosad Triacontad
Empirical Lower state energies - Tetradecad
Computational modelling M. Rey et al. Variational ab initio Irreducible tensor operators Exploit symmetry Reduce size of Hamiltonian Rotational structure Vibrational fitting Accurate line positions and intensities Evaluation at 298 K A. V. Nikitin et al. PCCP, 2013, 15
Theory vs Experiment (298 K)
Theory vs Experiment (298 K)
Quantum Number assignment
Quantum Number assignment
Conclusions and future work Hot CH4 298 to 1000K Empirical line lists Lower state energies Variational ab initio M. Rey et al. QN assignment ~2000 transitions in tetradecad band Further assignments Icosad and Triacontad Elevated temperatures Direct comparison to observation
acknowledgments Spectroscopy group at ODU Theoretical group at Reims Peter F. Bernath Robert J. Hargreaves (Oxford) Christopher Beale Mike Dulick Theoretical group at Reims Michaël Rey Andrei V. Nikitin Vladimir G. Tyuterev