Objective Factor polynomials by using the greatest common factor.

Slides:



Advertisements
Similar presentations
8-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz
Advertisements

Factoring Using the Distributive Property.
5 Minute Warm-Up Directions: Simplify each problem. Write the
8-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz
Sect. 5.3 Common Factors & Factoring by Grouping  Definitions Factor Common Factor of 2 or more terms  Factoring a Monomial into two factors  Identifying.
Multiplying a binomial by a monomial uses the Distribute property Distribute the 5.
© 2007 by S - Squared, Inc. All Rights Reserved.
The Greatest Common Factor and Factoring by Grouping
Introduction to Factoring 2 ∙ 3 = 6 4 ∙ 2 = 8 3 ∙ 3 ∙ 3 ∙ 3 = ∙ 3 ∙ 5 =
Warm Up 1. 2(w + 1) 2. 3x(x2 – 4) 2w + 2 3x3 – 12x 3. 4h2 and 6h 2h
Factors and Greatest 7-1 Common Factors Warm Up Lesson Presentation
For Common Assessment Chapter 10 Review
Objectives The student will be able to: 7A: Find the prime factorization of a number, the greatest common factor (GCF) for a set of monomials and polynomials.
Chapters 8 and 9 Greatest Common Factors & Factoring by Grouping
Recall: By the distributive property, we have x ( x + 2 ) = x² + 2x Now we’re given a polynomial expression and we want to perform the “opposite” of the.
Multiplying and Factoring Module VII, Lesson 2 Online Algebra
EXAMPLE 1 Multiply a monomial and a polynomial Find the product 2x 3 (x 3 + 3x 2 – 2x + 5). 2x 3 (x 3 + 3x 2 – 2x + 5) Write product. = 2x 3 (x 3 ) + 2x.
Chapter Factoring by GCF.
Chapter 6 Factoring Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1.
Holt Algebra Factoring by GCF 8-2 Factoring by GCF Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
11-4 Common Monomial Factoring 1. What are the factors of 18m ? 2 1st write all the factors of __. 1, 18, 2, 9, 3, 6 = 2nd list all the factors of __.
Simple Factoring Objective: Find the greatest common factor in and factor polynomials.
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 6 Factoring.
Multiplying and Factoring
Preview Warm Up Lesson Presentation.
Algebra I Review of Factoring Polynomials
Sec. 9-2: Multiplying & Factoring. To multiply a MONOMIAL with a polynomial, simply distribute the monomial through to EACH term of the polynomial. i.e.
8-2 Factoring by GCF Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
8-2 Factoring by GCF Multiplying and Factoring. 8-2 Factoring by GCF Multiplying and Factoring Lesson 9-2 Simplify –2g 2 (3g 3 + 6g – 5). –2g 2 (3g 3.
Objective Factor polynomials by using the greatest common factor.
8-1 and 8-2 Factoring Using the Distributive Property Algebra 1 Glencoe McGraw-HillLinda Stamper.
To factor means to write a number or expression as a product of primes. In other words, to write a number or expression as things being multiplied together.
Adding and Subtracting Polynomials Multiplying Polynomials Factoring Polynomials.
Math 9 Lesson #34 – Factors and GCF/Factoring with Distributive Property Mrs. Goodman.
Objective The student will be able to: multiply two polynomials using the distributive property.
Warm Up 1) 2(w + 1) 2) 3x(x 2 – 4) 2w + 23x 3 – 12x 2h Simplify. 13p Find the GCF of each pair of monomials. 3) 4h 2 and 6h 4) 13p and 26p 5.
Holt McDougal Algebra Factoring by GCF Warm Up 1. 2(w + 1) 2. 3x(x 2 – 4) 2w + 2 3x 3 – 12x 2h2h Simplify. 13p Find the GCF of each pair of monomials.
Math 71A 5.3 – Greatest Common Factors and Factoring by Grouping 1.
Multiplying and Factoring Section 8-2. Goals Goal To multiply a monomial by a polynomial. To factor a monomial from a polynomial. Rubric Level 1 – Know.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sec Greatest Common Factors; Factoring by Grouping.
Classwork: 01/23/ (w + 1) 2. 3x(x2 – 4) 3. 4h2 and 6h Simplify.
Objectives The student will be able to:
1-5 B Factoring Using the Distributive Property
Polynomials and Polynomial Functions
Lesson 6.1 Factoring by Greatest Common Factor
8-2 Multiplying Polynomials
Warm Up 1. 50, , 7 3. List the factors of 28. no yes
Warm Up 1. 2(w + 1) 2. 3x(x2 – 4) 2w + 2 3x3 – 12x 3. 4h2 and 6h 2h
14 Factoring and Applications.
Objectives Multiply polynomials.
Factoring Using the Distributive Property.
Lesson Objective: I will be able to …
13 Exponents and Polynomials.
Using Several Methods of Factoring
Tonight : Quiz Factoring Solving Equations Pythagorean Theorem
Before: February 5, 2018 Factor each polynomial. Check your answer.
Factoring Polynomials.
Do Now 1. 2(w + 1) 2. 3x(x2 – 4) 3. 4h2 and 6h 4. 13p and 26p5
6.1 & 6.2 Greatest Common Factor and Factoring by Grouping
Factoring Using the Distributive Property
7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz
The Greatest Common Factor
Day 136 – Common Factors.
Greatest Common Factors & Factoring by Grouping
Objective Factor polynomials by using the greatest common factor.
(B12) Multiplying Polynomials
Day 147 – Factoring Trinomials
Bellwork: 1/23/ (w + 1) 2. 3x(x2 – 4) 3. 4h2 and 6h
Objective Factor polynomials by using the greatest common factor.
ALGEBRA I - SECTION 8-2 (Multiplying and Factoring)
Presentation transcript:

Objective Factor polynomials by using the greatest common factor.

Recall that the Distributive Property states that ab + ac =a(b + c) Recall that the Distributive Property states that ab + ac =a(b + c). The Distributive Property allows you to “factor” out the GCF of the terms in a polynomial to write a factored form of the polynomial. A polynomial is in its factored form when it is written as a product of monomials and polynomials that cannot be factored further. The polynomial 2(3x – 4x) is not fully factored because the terms in the parentheses have a common factor of x.

Example 1A: Factoring by Using the GCF Factor each polynomial. Check your answer. 2x2 – 4 2x2 = 2  x  x Find the GCF. 4 = 2  2 2 The GCF of 2x2 and 4 is 2. Write terms as products using the GCF as a factor. 2x2 – (2  2) 2(x2 – 2) Use the Distributive Property to factor out the GCF. Multiply to check your answer. Check 2(x2 – 2) The product is the original polynomial.  2x2 – 4

Aligning common factors can help you find the greatest common factor of two or more terms. Writing Math

Example 1B: Factoring by Using the GCF Factor each polynomial. Check your answer. 8x3 – 4x2 – 16x 8x3 = 2  2  2  x  x  x Find the GCF. 4x2 = 2  2  x  x 16x = 2  2  2  2  x The GCF of 8x3, 4x2, and 16x is 4x. 2  2  x = 4x Write terms as products using the GCF as a factor. 2x2(4x) – x(4x) – 4(4x) Use the Distributive Property to factor out the GCF. 4x(2x2 – x – 4) Check 4x(2x2 – x – 4) Multiply to check your answer. The product is the original polynomials. 8x3 – 4x2 – 16x 

Example 1C: Factoring by Using the GCF Factor each polynomial. Check your answer. –14x – 12x2 – 1(14x + 12x2) Both coefficients are negative. Factor out –1. 14x = 2  7  x 12x2 = 2  2  3  x  x Find the GCF. The GCF of 14x and 12x2 is 2x. 2  x = 2x –1[7(2x) + 6x(2x)] Write each term as a product using the GCF. –1[2x(7 + 6x)] Use the Distributive Property to factor out the GCF. –2x(7 + 6x)

Example 1C: Factoring by Using the GCF Factor each polynomial. Check your answer. –14x – 12x2 Check –2x(7 + 6x) Multiply to check your answer. –14x – 12x2  The product is the original polynomial.

When you factor out –1 as the first step, be sure to include it in all the other steps as well. Caution!

Example 1D: Factoring by Using the GCF Factor each polynomial. Check your answer. 3x3 + 2x2 – 10 3x3 = 3  x  x  x Find the GCF. 2x2 = 2  x  x 10 = 2  5 There are no common factors other than 1. 3x3 + 2x2 – 10 The polynomial cannot be factored further.

 Check It Out! Example 1a Factor each polynomial. Check your answer. 5b + 9b3 5b = 5  b Find the GCF. 9b = 3  3  b  b  b The GCF of 5b and 9b3 is b. b Write terms as products using the GCF as a factor. 5(b) + 9b2(b) Use the Distributive Property to factor out the GCF. b(5 + 9b2) Multiply to check your answer. b(5 + 9b2) Check The product is the original polynomial. 5b + 9b3 

Check It Out! Example 1b Factor each polynomial. Check your answer. 9d2 – 82 9d2 = 3  3  d  d Find the GCF. 82 = 2  2  2  2  2  2 There are no common factors other than 1. 9d2 – 82 The polynomial cannot be factored further.

Check It Out! Example 1c Factor each polynomial. Check your answer. –18y3 – 7y2 – 1(18y3 + 7y2) Both coefficients are negative. Factor out –1. 18y3 = 2  3  3  y  y  y Find the GCF. 7y2 = 7  y  y y  y = y2 The GCF of 18y3 and 7y2 is y2. Write each term as a product using the GCF. –1[18y(y2) + 7(y2)] –1[y2(18y + 7)] Use the Distributive Property to factor out the GCF.. –y2(18y + 7)

Factor each polynomial. Check your answer. Check It Out! Example 1d Factor each polynomial. Check your answer. 8x4 + 4x3 – 2x2 8x4 = 2  2  2  x  x  x  x 4x3 = 2  2  x  x  x Find the GCF. 2x2 = 2  x  x 2  x  x = 2x2 The GCF of 8x4, 4x3 and –2x2 is 2x2. Write terms as products using the GCF as a factor. 4x2(2x2) + 2x(2x2) –1(2x2) 2x2(4x2 + 2x – 1) Use the Distributive Property to factor out the GCF. Check 2x2(4x2 + 2x – 1) Multiply to check your answer. 8x4 + 4x3 – 2x2 The product is the original polynomial.

Example 3: Factoring Out a Common Binomial Factor Factor each expression. A. 5(x + 2) + 3x(x + 2) The terms have a common binomial factor of (x + 2). 5(x + 2) + 3x(x + 2) (x + 2)(5 + 3x) Factor out (x + 2). B. –2b(b2 + 1)+ (b2 + 1) The terms have a common binomial factor of (b2 + 1). –2b(b2 + 1) + (b2 + 1) –2b(b2 + 1) + 1(b2 + 1) (b2 + 1) = 1(b2 + 1) (b2 + 1)(–2b + 1) Factor out (b2 + 1).