Micro Black Holes beyond Einstein

Slides:



Advertisements
Similar presentations
F. Debbasch (LERMA-ERGA Université Paris 6) and M. Bustamante, C. Chevalier, Y. Ollivier Statistical Physics and relativistic gravity ( )
Advertisements

ICHEP conference, Paris, 22/07/10. Emergence Current Paradigm FUNDAMENTAL FORCES: carried by elementary particles.
Brane-World Inflation
Black Holes and Particle Species Gia Dvali CERN Theory Division and New York University.
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
What prospects for Black Holes at the Large Hadron Collider ? How might black holes be produced at the LHC? Discussion of recent developments in their.
July 2005 Einstein Conference Paris Thermodynamics of a Schwarzschild black hole observed with finite precision C. Chevalier 1, F. Debbasch 1, M. Bustamante.
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Black Holes and Extra Dimensions Jonathan Feng UC Irvine Penn State Physics Department Colloquium 30 January 2003.
Rotating BHs at future colliders: Greybody factors for brane fields Kin-ya Oda Kin-ya Oda, Tech. Univ. Munich Why Study BHs at Collider? BH at Collider.
Holographic Dark Energy Preety Sidhu 5 May Black Holes and Entropy Black holes are “maximal entropy objects” Entropy of a black hole proportional.
1 Aurelien Barrau LPSC-Grenoble (CNRS / UJF) MICROSCOPIC BLACK HOLES AS A PROBE FOR NEW PHYSICS Aurélien Barrau Julien Grain, Gaelle Boudoul Laboratory.
Primordial BHs. 2 Main reviews and articles astro-ph/ Primordial Black Holes - Recent Developments astro-ph/ Gamma Rays from Primordial.
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Searching for Extra Dimensions in High Energy Cosmic Rays Work in collaboration with Alessandro Cafarella (Lecce) Theodore Tomaras (Univ. of Crete) XIII.
Colliding Hadrons as Cosmic Membranes and Possible Signatures of Lost Momentum I.Ya.Aref’eva Steklov Mathematical Institute, Moscow A topical conference.
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Sreerup Raychaudhuri TIFR Extra Dimensions and Collider Physics Workshop on Synergy between High Energy and High Luminosity Frontiers Tata Institute of.
Einstein Field Equations and First Law of Thermodynamics Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics Chinese Academy of Sciences.
New Physics with Black Holes Julien GRAIN Aurelien BARRAU, Gaelle BOUDOUL.
The false vacuum bubble, the true vacuum bubble, and the instanton solution in curved space 1/23 APCTP 2010 YongPyong : Astro-Particle and Conformal Topical.
The false vacuum bubble : - formation and evolution - in collaboration with Chul H. Lee(Hanyang), Wonwoo Lee, Siyong Nam, and Chanyong Park (CQUeST) Based.
Influence of dark energy on gravitational lensing Kabita Sarkar 1, Arunava Bhadra 2 1 Salesian College, Siliguri Campus, India High Energy Cosmic.
Black hole solutions in the N>4 gravity models with higher order curvature corrections and possibilities for their experimental search S.Alexeyev *, N.Popov,
Can observations look back to the beginning of inflation ?
Low scale gravity black holes at LHC Enikő Regős ( CERN )
Yoshinori Matsuo (KEK) in collaboration with Hikaru Kawai (Kyoto U.) Yuki Yokokura (Kyoto U.)
Dark Energy at Future Colliders: Testing the True Nature of Dark Energy in Black Hole Evaporations Jörg Jäckel Rencontres des Moriond March 2005 Michael.
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
연세대 특강 What is a Black Hole? Black-Hole Bomb(BHB) Mini Black Holes
Collider Signals of Extra Dimension Scenarios
Kaluza-Klein Braneworld Cosmology S Kanno, D Langlois, MS & J Soda, PTP118 (2007) 701 [arXiv: ] Misao Sasaki YITP, Kyoto University.
Innermost stable circular orbits around squashed Kaluza-Klein black holes Ken Matsuno & Hideki Ishihara ( Osaka City University ) 1.
Searching for in High Mass Dilepton Spectrum at CDF, Fermilab ADD model Drell-Yan production of a graviton of varying string scale M S = M Pl(4+n) [4]
Search for Catalysis of Black Holes Formation in Hight Energy Collisions Irina Aref’eva Steklov Mathematical Institute, Moscow Kolomna, QUARKS’2010, June.
Evidence for a dark matter particle Yukio Tomozawa University of Michigan March 2016.
The Generalized Uncertainty Principle and Extra Dimensions
Dept.of Physics & Astrophysics
Cosmology in a brane-induced gravity model with trace-anomaly terms
Thermodynamical behaviors of nonflat Brans-Dicke gravity with interacting new agegraphic dark energy Xue Zhang Department of Physics, Liaoning Normal University,
Equation of State and Unruh temperature
Theoretical Particle Physics Group (TPP)
Formation of universe, blackhole and 1st order phase transition
Thermodynamic Volume in AdS/CFT
INDUCED COSMOLOGY ON A CODIMENSION-2 BRANE IN A CONICAL BULK
3D (Higher Spin) Gravity Black Holes and Statistical Entropy
Black Holes and quantum fields
A rotating hairy BH in AdS_3
Charged black holes in string-inspired gravity models
Andrej Ficnar Columbia University
Could loop quantum gravity corrections
Sensitivity of ATLAS to Extra Dimensions
Searches for Extra Dimensions, Leptoquarks, and Technicolor at the LHC
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
Primordial BHs.
Based on the work submitted to EPJC
The Cosmological Constant Problem & Self-tuning Mechanism
Exam 2 free response retake: Today, 5 pm room next to my office
Black holes: observations Lecture 7: Horizon and exotics
Global Defects near Black Holes
Black holes: observations Lecture 7: Horizon and exotics
Based on Phys. Lett. B 765, 226 (2017) Collaborated with Li You
The 3rd IBS-KIAS Joint Workshop at High
Primordial BHs.
Black Holes Escape velocity Event horizon Black hole parameters
Messages from the Big Bang George Chapline and Jim Barbieri
Collider Signals of Large Extra Dimension
Graviton Emission in The Bulk from a Higher Dimensional Black Hole
Presentation transcript:

Micro Black Holes beyond Einstein Julien GRAIN, Aurelien BARRAU Panagiota Kanti, Stanislav Alexeev Je me presente Je presente le travail

What micro-black holes “say” about new physics Astrophysics and Cosmology : Primordial Black Holes (power spectrum, dark matter, etc.) Gauss-Bonnet Black holes at the LHC Black hole’s evaporation in a non-asymptotically flat space-time

Black Holes evaporate Radiation spectrum Hawking evaporation law

Micro Black holes at the LHC We will see… Let’s hope!!! Gauss-Bonnet Black holes at the LHC Black hole’s evaporation in a non-asymptotically flat space-time A. Barrau, J. Grain & S. Alexeev Phys. Lett. B 584, 114-122 (2004) S. Alexeev, N. Popov, A. Barrau, J. Grain In preparation

Arkani-Hamed, Dimopoulos, Dvali Phys. Lett. B 429, 257 (1998) Black Holes at the LHC ? Hierarchy problem in standard physics: One of the solutions: Large extra dimensions Arkani-Hamed, Dimopoulos, Dvali Phys. Lett. B 429, 257 (1998) J’explique le pb de la hierarchie Parmi les solutions:ADD RS Possibilite d’abaisser l’échelle de planck, expliquer le Vd-4 et Md

Black Holes Creation From Giddings & al. (2002) Two partons with a center-of-mass energy moving in opposite direction A black hole of mass and horizon radius is formed if the impact parameter is lower than Processus a seuil: au LHC l’energie > Md expliquer le schema

Precursor Works Giddings, Thomas Phys. Rev. D 65, 056010 (2002) Dimopoulos, Landsberg Phys. Rev. Lett 87, 161602 (2001) Computation of the black hole’s formation cross-section Derivation of the number of black holes produced at the LHC Determination of the dimensionnality of space using Hawking’s law Parler de Landsberg et giddings Donner leur resultats:section efficace nombre de BH produits evaporation, l’expliquer, peut etre ils ne le savent pas  loi de hawking donne la dimension prenne en compte une evaporation instantanée From Dimopoulos & al. 2001

Gauss-Bonnet Black Holes? All previous works have used D-dimensionnal Schwarzschild black holes General Relativity: Low energy limit of String Theory: Toujours utiliser les schwarzschild generalisés RS et ADD viennent de la theorie des cordes Le terme de GB vient aussi de cette theorie  Plus coherent

Gauss-Bonnet Black Holes’ Thermodynamic (1) Properties derived by: Boulware, Deser Phys. Rev. Lett. 83, 3370 (1985) Cai Phys. Rev. D 65, 084014 (2002) Propriété dérive par Cai Toujours exprimer en terme de l’horizon du trou noir. Expressed in function of the horizon radius

Gauss-Bonnet Black holes’ Thermodynamic (2) Non-monotonic behaviour taking full benefit of evaporation process (integration over black hole’s lifetime) Temperature en fonction de la masse Comportement non monotone donc utiliser le processus d’evaporation dans son ensemble

The flux Computation Analytical results in the high energy limit The grey-body factors are constant is the most convenient variable Harris, Kanti JHEP 010, 14 (2003) Hypothese des tres haute energy, ce qui est justifier car les trous npoirs formes sont deja tres chaud Horizon est la variable la plus adapte Prise en compte de l’evolution temporelle du BH

The Flux Computation (ATLAS detection) Planck scale = 1TeV Number of Black Holes produced at the LHC derived by Landsberg Hard electrons, positrons and photons sign the Black Hole decay spectrum ATLAS resolution Exemple de flux Il semblerait qu’il y ait des degenerescences mais on verra que les valeurs de D et lambda peuvent etre reconstruite Mplanck=1tev Utilisation des photons, e+ et e- de hautes energy car: hadron affecte par la fragmentation phptpn, e+ et e- de hautes energy pas affectes par les produits de la fragmentation Resolution de ATLAS

The Results -measurement procedure- For different input values of (D,), particles emitted by the full evaporation process are generated spectra are reconstructed for each mass bin A analysis is performed Valeur differentes du couple D et lambda Reconstruction des spectres mesure par ATLAS Analyse de chi2 avec les modeles theoriques Exemple de D=8 et lambda=5 marche bien, meme resultat dans les autres cas

The Results -discussion- For a planck scale of order a TeV, ATLAS can distinguish between the case with and the case without Gauss-Bonnet term. Important progress in the construction of a full quantum theory of gravity The results can be refined by taking into account more carefully the endpoint of Hawking evaporation The statistical significance of the analysis should be taken with care ATLAS pourra mesurer Lambda et D Prendre mieux en compte la fin de vie Faire attention au chi2 Barrau, Grain & Alexeev Phys. Lett. B 584, 114 (2004)

Kerr Gauss-bonnet Black Holes Black Holes formed at colliders are expected to be spinning The previous study should be done for spinning Black Holes Solve the Einstein equation with the Gauss-Bonnet term in the static, axisymmetric case S. Alexeev, N. Popov, A. Barrau, J. Grain In preparation

Let’s add a cosmological constant Gauss-Bonnet Black holes at the LHC Black hole’s evaporation in a non-asymptotically flat space-time P. Kanti, J. Grain, A. Barrau in preparation

(A)dS Universe De Sitter (dS) Universe Anti-De Sitter (AdS) Universe Cosmological constant De Sitter (dS) Universe Anti-De Sitter (AdS) Universe Positive cosmological constant Presence of an event horizon at Negative cosmological constant Presence of closed geodesics

Black Holes in such a space-time Metric function h(r) Two event horizons and No solution for with One event horizon Exist only for with De Sitter (dS) Universe Anti-De Sitter (AdS) Universe

Calculation of Greybody factors (1) A potential barrier appears in the equation of motion of fields around a black hole: Black holes radiation spectrum is decomposed into three part: De Sitter horizon Tortoise coordinate Potential barrier Black hole’s horizon Break vacuum fluctuations Cross the potential barrier Phase space term

Calculation of Greybody factors (2) De Sitter horizon Analytical calculations Numerical calculations Equation of motion analytically solved at the black hole’s and the de Sitter horizon Equation of motion numerically solved from black hole’s horizon to the de Sitter one

Calculation of Greybody factors -results for scalar in dS universe- The divergence comes from the presence of two horizons P. Kanti, J. Grain, A. Barrau in preparation

Conclusion Big black holes are fascinating… But small black holes are far more fascinating!!!

Primordial Black holes in our Galaxy F.Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul, R.Taillet Astrophy. J. (2001) 536, 172 A. Barrau, G. Boudoul et al., Astronom. Astrophys., 388, 767 (2002) Astrophys. 398, 403 (2003) Barrau, Blais, Boudoul, Polarski, Phys. Lett. B, 551, 218 (2003)

Cosmological constrain using PBH Small black holes could have been formed in the early universe Stringent constrains on the amount of PBH in the galaxy: The anti-proton flux emitted by PBH is evaluating using an improved propagation scheme for cosmic rays This leads to constrain on the PBH fraction New window of detection using low energy anti-deuteron

Derivation of the Kerr Gauss-Bonnet black holes solution S. Alexeev, N. Popov, A. Barrau, J. Grain In preparation

The Kerr-Schild metric -work in progress- Most convenient metric for axisymmetric problem: Black hole’s angular momentum is paramatrized by a Unknown metric function Radial coordinate Zenithal coordinate

Deriving the metric function Method: The kerr-schild metric is injected in the Einstein’s equation The ur equation verified by β is solved Compatibility for the other component is finally checked Boundary conditions

Results and temperature calculation functions have been numerically obtained for The temperature is obtain from the gravity surface at the event horizon