Radiometry (Chapter 4).

Slides:



Advertisements
Similar presentations
The Radiance Equation.
Advertisements

Computer Vision Radiometry. Bahadir K. Gunturk2 Radiometry Radiometry is the part of image formation concerned with the relation among the amounts of.
Computer graphics & visualization Global Illumination Effects.
Capturing light Source: A. Efros. Image formation How bright is the image of a scene point?
Computer Graphics (Fall 2008) COMS 4160, Lecture 18: Illumination and Shading 1
The Radiance Equation Mel Slater. Outline Introduction Light Simplifying Assumptions Radiance Reflectance The Radiance Equation Traditional Rendering.
Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry Many slides courtesy Pat Hanrahan.
CPSC 641 Computer Graphics: Radiometry and Illumination Jinxiang Chai Many slides from Pat Haranhan.
Basic Principles of Surface Reflectance
RADIOSITY Submitted by CASULA, BABUPRIYANK. N. Computer Graphics Computer Graphics Application Image Synthesis Animation Hardware & Architecture.
Radiometry. Outline What is Radiometry? Quantities Radiant energy, flux density Irradiance, Radiance Spherical coordinates, foreshortening Modeling surface.
Physically Based Illumination Models
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Material Representation K. H. Ko School of Mechatronics Gwangju Institute.
Graphics Graphics Korea University cgvr.korea.ac.kr Illumination Model 고려대학교 컴퓨터 그래픽스 연구실.
Advanced Computer Graphics (Spring 2013) CS 283, Lecture 8: Illumination and Reflection Many slides courtesy.
Review Pinhole projection model What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection?
Computer Vision - A Modern Approach Set: Radiometry Slides by D.A. Forsyth Radiometry Questions: –how “bright” will surfaces be? –what is “brightness”?
Capturing light Source: A. Efros. Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How.
Image Formation (approximately) Vision infers world properties form images. So we need to understand how images depend on these properties. Two key elements.
Representations of Visual Appearance COMS 6160 [Fall 2006], Lecture 2 Ravi Ramamoorthi
3-D Computer Vision CSc83029 / Ioannis Stamos 3-D Computer Vision CSc Radiometry and Reflectance.
Stefano Soatto (c) UCLA Vision Lab 1 Homogeneous representation Points Vectors Transformation representation.
Appearance Models for Graphics COMS , Lecture 2 BRDFs and Radiometry Many slides courtesy Pat Hanrahan:
Image Formation (approximately) Vision infers world properties form images. So we need to understand how images depend on these properties. Two key elements.
Radiometry, lights and surfaces
© 2002 by Davi GeigerComputer Vision January 2002 L1.1 Image Formation Light can change the image (and appearances). What is the relation between pixel.
Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2
Introduction to Computer Vision CS / ECE 181B Tues, May 18, 2004 Ack: Matthew Turk (slides)
Basic Principles of Surface Reflectance
© 2004 by Davi GeigerComputer Vision February 2004 L1.1 Image Formation Light can change the image and appearances (images from D. Jacobs) What is the.
Image formation 2. Blur circle A point at distance is imaged at point from the lens and so Points a t distance are brought into focus at distance Thus.
© 2003 by Davi GeigerComputer Vision September 2003 L1.1 Image Formation Light can change the image and appearances (images from D. Jacobs) What is the.
Basic Principles of Surface Reflectance Lecture #3 Thanks to Shree Nayar, Ravi Ramamoorthi, Pat Hanrahan.
Computer Graphics (Fall 2004) COMS 4160, Lecture 16: Illumination and Shading 2 Lecture includes number of slides from.
1 Dr. Scott Schaefer Radiosity. 2/38 Radiosity 3/38 Radiosity Physically based model for light interaction View independent lighting Accounts for indirect.
Lighting affects appearance. Light Source emits photons Photons travel in a straight line When they hit an object they: bounce off in a new direction.
Light and shading Source: A. Efros.
CS 445 / 645: Introductory Computer Graphics
EECS 274 Computer Vision Light and Shading. Radiometry – measuring light Relationship between light source, surface geometry, surface properties, and.
Radiation: Processes and Properties -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3.
Reflectance Map: Photometric Stereo and Shape from Shading
Computer Vision CS 776 Spring 2014 Cameras & Photogrammetry 3 Prof. Alex Berg (Slide credits to many folks on individual slides)
Image formation ECE 847: Digital Image Processing Stan Birchfield Clemson University.
MIT EECS 6.837, Durand and Cutler Local Illumination.
Capturing light Source: A. Efros.
Bi-Directional Reflectance Distribution Functions (BRDF’s) Matthew McCrory.
111/17/ :21 Graphics II Global Rendering and Radiosity Session 9.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2012.
Announcements Office hours today 2:30-3:30 Graded midterms will be returned at the end of the class.
04/30/02(c) 2002 University of Wisconsin Last Time Subdivision techniques for modeling We are now all done with modeling, the standard hardware pipeline.
Photo-realistic Rendering and Global Illumination in Computer Graphics Spring 2012 Material Representation K. H. Ko School of Mechatronics Gwangju Institute.
CSCE 641 Computer Graphics: Reflection Models Jinxiang Chai.
In the name of God Computer Graphics. Last Time Some techniques for modeling Today Global illumination and raytracing.
Radiometry of Image Formation Jitendra Malik. A camera creates an image … The image I(x,y) measures how much light is captured at pixel (x,y) We want.
01/27/03© 2002 University of Wisconsin Last Time Radiometry A lot of confusion about Irradiance and BRDFs –Clarrified (I hope) today Radiance.
Illumination Study of how different materials reflect light Definition of radiance, the fundamental unit of light transfer in computer graphics How the.
CS552: Computer Graphics Lecture 33: Illumination and Shading.
Radiometry of Image Formation Jitendra Malik. What is in an image? The image is an array of brightness values (three arrays for RGB images)
1 Ch. 4: Radiometry–Measuring Light Preview 。 The intensity of an image reflects the brightness of a scene, which in turn is determined by (a) the amount.
CS580: Radiometry Sung-Eui Yoon ( 윤성의 ) Course URL:
Shading Revisited Some applications are intended to produce pictures that look photorealistic, or close to it The image should look like a photograph A.
Advanced Computer Graphics
BRDFs Randy Rauwendaal.
© 2002 University of Wisconsin
Terminology.
Capturing light Source: A. Efros.
Radiosity Dr. Scott Schaefer.
Lecture 28: Photometric Stereo
The Rendering Equation
Computer Graphics (Fall 2003)
Presentation transcript:

Radiometry (Chapter 4)

Radiometry Questions: how “bright” will surfaces be? what is “brightness”? measuring light interactions between light and surfaces Core idea - think about light arriving at a surface around any point is a hemisphere of directions Simplest problems can be dealt with by reasoning about this hemisphere

θ cos θ Lighting direction No energy imparted θ Power = energy/time

Foreshortening Principle: two sources that look the same to a receiver must have the same effect on the receiver. Principle: two receivers that look the same to a source must receive the same amount of energy. “look the same” means produce the same input hemisphere (or output hemisphere) Reason: what else can a receiver know about a source but what appears on its input hemisphere? (ditto, swapping receiver and source) Crucial consequence: a big source (resp. receiver), viewed at a glancing angle, must produce (resp. experience) the same effect as a small source (resp. receiver) viewed frontally.

Solid Angle By analogy with angle (in radians), the solid angle subtended by a region at a point is the area projected on a unit sphere centered at that point The solid angle subtended by a patch area dA is given by Another useful expression: Solid angle is an area on sphere and the unit is steradians.

Measuring Light in Free Space Desirable property: in a vacuum, the relevant unit does not go down along a straight line. How do we get a unit with this property? Think about the power transferred from an infinitesimal source to an infinitesimal receiver. We have total power leaving s to r = total power arriving at r from s Also: Power arriving at r is proportional to: solid angle subtended by s at r (because if s looked bigger from r, there’d be more) foreshortened area of r (because a bigger r will collect more power

Infinitesimal patch perpendicular to the lighting direction Light source, power E If we use Power/area, the value will decrease along any straight line emanating from the source

Need to take solid angle (the size of the source appeared to the patch) into account We want a quantity (radiance) that will allow us to determine the energy transferred to a patch if we know how small/large the patch appeared to the source and the size of the patch.

Radiance Radiance is constant along a straight line ! All this suggests that the light transferred from source to receiver should be measured as: Radiant power per unit foreshortened area per unit solid angle This is radiance Units: watts per square meter per steradian (wm-2sr-1) Usually written as: Crucial property: In a vacuum, radiance leaving p in the direction of q is the same as radiance arriving at q from p which was how we got to the unit Radiance is constant along a straight line !

Irradiance Converting radiance into irradiance How much light is arriving at a surface? Sensible unit is Irradiance Incident power per unit area not foreshortened This is a function of incoming angle. A surface experiencing radiance L(x,q,f) coming in from dw experiences irradiance Crucial property: Total power arriving at the surface is given by adding irradiance over all incoming angles --- this is why it’s a natural unit Total power is Converting radiance into irradiance

The BRDF Relation between incoming illumination and reflected light Assuming that surfaces don’t emit light (i.e. are cool) all the light leaving a point is due to that arriving at that point Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF) the ratio of the radiance in the outgoing direction to the incident irradiance On a surface, BRDF could be different for different points, hence the dependence on x.

Incoming light Incoming light Reflected light

BRDF Units: inverse steradians (sr-1) Symmetric in incoming and outgoing directions - this is the Helmholtz reciprocity principle Radiance leaving a surface in a particular direction: add contributions from every incoming direction

Suppressing Angles - Radiosity In many situations, we do not really need angle coordinates e.g. cotton cloth, where the reflected light is not dependent on angle Appropriate radiometric unit is radiosity total power leaving a point on the surface, per unit area on the surface (Wm-2) note that this is independent of the direction Radiosity from radiance? sum radiance leaving surface over all exit directions, multiplying by a cosine because this is per unit area not per unit foreshortened area

Radiosity Important relationship: radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth) .

Suppressing the angles in the BRDF BRDF is a very general notion some surfaces need it (underside of a CD; material like velvet; etc) very hard to measure illuminate from one direction, view from another, repeat very unstable minor surface damage can change the BRDF e.g. ridges of oil left by contact with the skin can act as lenses for many surfaces, light leaving the surface is largely independent of exit angle surface roughness is one source of this property

Directional hemispheric reflectance the fraction of the incident irradiance in a given direction that is reflected by the surface (whatever the direction of reflection) unitless, range is 0-1 Note that DHR varies with incoming direction

Lambertian surfaces and albedo For some surfaces, the DHR is independent of illumination direction too cotton cloth, carpets, matte paper, matte paints, etc. For such surfaces, radiance leaving the surface is independent of angle Called Lambertian surfaces (same Lambert) or ideal diffuse surfaces for a Lambertian surface, BRDF is independent of angle, too. DHR is called diffuse reflectance or albedo. Useful fact:

Specular surfaces Another important class of surfaces is specular, or mirror-like. radiation arriving along a direction leaves along the specular direction reflect about normal some fraction is absorbed, some reflected on real surfaces, energy usually goes into a lobe of directions

Phong’s model There are very few cases where the exact shape of the specular lobe matters. Typically: very, very small --- mirror small -- blurry mirror bigger -- see only light sources as “specularities” very big -- faint specularities Phong’s model reflected energy falls off with

Lambertian + specular Widespread model Advantages Disadvantages all surfaces are Lambertian plus specular component Advantages easy to manipulate very often quite good approximation Disadvantages some surfaces are not e.g. underside of CD’s, feathers of many birds, most rough surfaces, oil films (skin!), wet surfaces Generally, very little advantage in modelling behaviour of light at a surface in more detail.

Translucent object, not Lambertian + specular