Advanced Topics in Security

Slides:



Advertisements
Similar presentations
Announcements: 1. Term project groups and topics due midnight 2. HW6 due next Tuesday. Questions? This week: Primality testing, factoring Primality testing,
Advertisements

ElGamal Public Key Cryptography CS 303 Alg. Number Theory & Cryptography Jeremy Johnson Taher ElGamal, "A Public-Key Cryptosystem and a Signature Scheme.
Discrete Logarithm(s) (DLs) Fix a prime p. Let a, b be nonzero integers (mod p). The problem of finding x such that a x ≡ b (mod p) is called the discrete.
@Yuan Xue 285: Network Security CS 285 Network Security Digital Signature Yuan Xue Fall 2012.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-9 Public-Key Cryptography.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-5 Mathematical Background:
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-12 Public-Key Cryptography.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Tutorial-5 Theory of Secret-Key.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-7 Secret-Key Ciphers.
Public-Key Cryptography ElGamal Public-Key Crypto-System
Cryptographic Protocols Secret sharing, Threshold Security
Mathematical Background : A quick approach to Group and Field Theory
Network Security Netzwerksicherheit Lecture ID: ET-IDA-082 and 111
Mathematical Background: Groups, Rings, Finite Fields (GF)
Mathematical Background for Cryptography: Modular arithmetic and gcd
Outline Primitive Element Theorem Diffie Hellman Key Distribution
Rabin Lock and Public-Key Systems
Mathematical Background: Extension Fields
Network Security Design Fundamentals Lecture-13
Public-Key Cryptography RSA Rivest-Shamir-Adelmann Public-Key System
RSA Public-Key Secrecy and Signature
DH Public-Key Exchange
Design Problems (Open book)
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Sample Solution Cryptology Design Fundamentals
Advanced Topics in Security
Network Security Sample Solution Short questions (Closed book)
Mathematical Background: Prime Numbers
ElGamal Public-Key Systems over GF(p) & GF(2m)
Applied Symbolic Computation (CS 300) Modular Arithmetic
Symmetric-Key Cryptography
Mathematical Background: Primes and (GF)
Applied Symbolic Computation (CS 300) Modular Arithmetic
Hn is the number of moves to solve. n = 1, Hn = 1 n = 2, Hn = 3 n = 3, Hn = 7 Hn = 2Hn
Applied Symbolic Computation (CS 300) Modular Arithmetic
Applied Symbolic Computation (CS 300) Modular Arithmetic
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
CSC 774 Advanced Network Security
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Sample Solution Cryptology Design Fundamentals
Cryptology Design Fundamentals
Sample Solution Final exam: Cryptology Design Fundamentals
Applied Symbolic Computation (CS 300) Modular Arithmetic
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology System Design Fundamentals
Cryptographic Protocols Secret Sharing, Threshold Security
Network Security Tutorial-14 Design Fundamentals IPSEC, KERBEROS
Network Security Design Fundamentals Lecture-13
Cryptology Design Fundamentals
Network Security Tutorial-16 Design Fundamentals PGP ET-IDA-082
Network Security Tutorial-16 Design Fundamentals PGP ET-IDA-082
Cryptology Design Fundamentals
Mathematical Background: Groups, Rings, Finite Fields (GF)
Public-Key Cryptography Quadratic Residues and „Rabin Lock“
Mathematical Background : A quick approach to Group and Field Theory
Introduction to Modern Cryptography
Mathematical Background: Extension Finite Fields
Mathematical Background: Primes and (GF)
Presentation transcript:

Advanced Topics in Security Lecture ID: ET-IDA -044 Section-B: Tutorial-2 Voting Systems over GF(p) 22.01.2011 V-2 MSc. A. M. Basil , Prof. Wael Adi Institute for Computer and Network Engineering Technical University of Braunschweig Braunschweig, Germany Technische Universitaet Braunschweig

Homomorphic Encryption ElGamal Crypto – System Setup (1985) Teller: α primitive element in GF(p) Teller secret key = x, Public key y = αx ( Ci = Mi Zi) n voters 1 ( C1 C2 · · Cn , h1 h2 · · hn ) X X X (M1 · · Mn · Z1 · · Zn , h1 · · hn) (C1, h1) (Ci, hi) (Cn, hn) Mi = αvi Mn = αvn M1 = αv1 ( αv1+…+vn · αx(R1+…+Rn) , αR1+…+Rn ) X X X Encryption of αVs = α v1+v2+..+vn Problem : getting the sum of the votes Vs. Solution by exhaustive search to get the discrete log as Vs is not cryptographically huge! Z1 = yR1 = αx.R1 Zi = yRi = αx.Ri Zn = yRn = αx.Rn h1 = αR1 hi = αRi hn = αRn Technische Universitaet Braunschweig

Technische Universitaet Braunschweig Applying Homomorphic mapping for Voting using a group in a ring Zm Find a strong prime: Strong prime p = 2 . q + 1 (see Pocklington’s Theorem) Generating ELGAMAL System: GF ( p) , α (Generator of a cyclic group) very high order Alternatively take an element in Zm with a high order P=2 . q +1 P1=2 . 11 +1=23 Check by applying Pocklington’s theorem! P2=2 . 23+1=47 Check by applying Pocklington’s theorem! Take ⟹ m = 23 . 47 Technische Universitaet Braunschweig

Technische Universitaet Braunschweig Highest possible element order = 506 = 2 . 11 . 23 All possible elements orders are: 1 , 2 , 11 , 22 , 23 , 46 , 253 , 506 Technische Universitaet Braunschweig

Technische Universitaet Braunschweig

Technische Universitaet Braunschweig

Technische Universitaet Braunschweig