Lecture: Large Caches, Virtual Memory

Slides:



Advertisements
Similar presentations
Lecture 19: Cache Basics Today’s topics: Out-of-order execution
Advertisements

1 Lecture 17: Large Cache Design Papers: Managing Distributed, Shared L2 Caches through OS-Level Page Allocation, Cho and Jin, MICRO’06 Co-Operative Caching.
CSIE30300 Computer Architecture Unit 10: Virtual Memory Hsin-Chou Chi [Adapted from material by and
1 Lecture 20: Cache Hierarchies, Virtual Memory Today’s topics:  Cache hierarchies  Virtual memory Reminder:  Assignment 8 will be posted soon (due.
1 Lecture 14: Virtual Memory Topics: virtual memory (Section 5.4) Reminders: midterm begins at 9am, ends at 10:40am.
1 Lecture 15: Virtual Memory and Large Caches Today: TLB design and large cache design basics (Sections )
1 Lecture 16: Virtual Memory Today: DRAM innovations, virtual memory (Sections )
1 Lecture 16: Large Cache Innovations Today: Large cache design and other cache innovations Midterm scores  91-80: 17 students  79-75: 14 students 
Lecture 17: Virtual Memory, Large Caches
1 Lecture 14: Virtual Memory Today: DRAM and Virtual memory basics (Sections )
1 Lecture 21: Virtual Memory, I/O Basics Today’s topics:  Virtual memory  I/O overview Reminder:  Assignment 8 due Tue 11/21.
1 Lecture 15: Large Cache Design Topics: innovations for multi-mega-byte cache hierarchies Reminders:  Assignment 5 posted.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy (Part II)
11/10/2005Comp 120 Fall November 10 8 classes to go! questions to me –Topics you would like covered –Things you don’t understand –Suggestions.
Lecture 19: Virtual Memory
1 Lecture: Virtual Memory, DRAM Main Memory Topics: virtual memory, TLB/cache access, DRAM intro (Sections 2.2)
The Memory Hierarchy 21/05/2009Lecture 32_CA&O_Engr Umbreen Sabir.
1 Lecture: Large Caches, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5)
1 Lecture 13: Cache, TLB, VM Today: large caches, virtual memory, TLB (Sections 2.4, B.4, B.5)
1 Virtual Memory Main memory can act as a cache for the secondary storage (disk) Advantages: –illusion of having more physical memory –program relocation.
1 Some Real Problem  What if a program needs more memory than the machine has? —even if individual programs fit in memory, how can we run multiple programs?
1 Lecture 16: Virtual Memory Topics: virtual memory, improving TLB performance (Sections )
Introduction: Memory Management 2 Ideally programmers want memory that is large fast non volatile Memory hierarchy small amount of fast, expensive memory.
Multilevel Caches Microprocessors are getting faster and including a small high speed cache on the same chip.
1 Lecture: Cache Hierarchies Topics: cache innovations (Sections B.1-B.3, 2.1)
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
1  2004 Morgan Kaufmann Publishers Chapter Seven Memory Hierarchy-3 by Patterson.
1 Lecture: Virtual Memory Topics: virtual memory, TLB/cache access (Sections 2.2)
1 Lecture: Virtual Memory, DRAM Main Memory Topics: virtual memory, TLB/cache access, DRAM intro (Sections 2.2)
3/1/2002CSE Virtual Memory Virtual Memory CPU On-chip cache Off-chip cache DRAM memory Disk memory Note: Some of the material in this lecture are.
CS203 – Advanced Computer Architecture Virtual Memory.
1 Lecture: Large Caches, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5)
CS161 – Design and Architecture of Computer
Memory COMPUTER ARCHITECTURE
Lecture: Large Caches, Virtual Memory
CS161 – Design and Architecture of Computer
Lecture: Large Caches, Virtual Memory
Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main.
Lecture: Cache Hierarchies
Some Real Problem What if a program needs more memory than the machine has? even if individual programs fit in memory, how can we run multiple programs?
Memory Hierarchy Virtual Memory, Address Translation
Cache Memory Presentation I
Lecture: Cache Hierarchies
Lecture 13: Large Cache Design I
Lecture 21: Memory Hierarchy
Lecture 21: Memory Hierarchy
Lecture 12: Cache Innovations
Part V Memory System Design
Virtual Memory 4 classes to go! Today: Virtual Memory.
Lecture: DRAM Main Memory
Lecture 23: Cache, Memory, Virtual Memory
Lecture 22: Cache Hierarchies, Memory
Lecture: DRAM Main Memory
Page that info back into your memory!
Lecture: Cache Innovations, Virtual Memory
Lecture 22: Cache Hierarchies, Memory
Andy Wang Operating Systems COP 4610 / CGS 5765
Lecture 24: Memory, VM, Multiproc
Morgan Kaufmann Publishers Memory Hierarchy: Cache Basics
Lecture 15: Memory Design
Lecture 22: Cache Hierarchies, Memory
Lecture 11: Cache Hierarchies
Lecture: Cache Hierarchies
Lecture 21: Memory Hierarchy
Lecture 24: Virtual Memory, Multiprocessors
Lecture 23: Virtual Memory, Multiprocessors
Lecture 13: Cache Basics Topics: terminology, cache organization (Sections )
Sarah Diesburg Operating Systems CS 3430
Sarah Diesburg Operating Systems COP 4610
Presentation transcript:

Lecture: Large Caches, Virtual Memory Topics: large caches, NUCA, virtual memory intro, TLB/cache access (Sections 2.2)

Shared Vs. Private Caches in Multi-Core What are the pros/cons to a shared L2 cache? P1 P2 P3 P4 P1 P2 P3 P4 L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2

Shared Vs. Private Caches in Multi-Core Advantages of a shared cache: Space is dynamically allocated among cores No waste of space because of replication Potentially faster cache coherence (and easier to locate data on a miss) Advantages of a private cache: small L2  faster access time private bus to L2  less contention

UCA and NUCA The small-sized caches so far have all been uniform cache access: the latency for any access is a constant, no matter where data is found For a large multi-megabyte cache, it is expensive to limit access time by the worst case delay: hence, non-uniform cache architecture

Large NUCA Issues to be addressed for Non-Uniform Cache Access: Mapping Migration Search Replication CPU

Shared NUCA Cache A single tile composed of a core, L1 caches, and a bank (slice) of the shared L2 cache Core 0 Core 1 Core 2 Core 3 L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L2 $ L2 $ L2 $ L2 $ Core 4 Core 5 Core 6 Core 7 The cache controller forwards address requests to the appropriate L2 bank and handles coherence operations L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L1 D$ L1 I$ L2 $ L2 $ L2 $ L2 $ Memory Controller for off-chip access

Problem 1 Assume a large shared LLC that is tiled and distributed on the chip. Assume 16 tiles. Assume an OS page size of 8KB. The entire LLC has a size of 32 MB, uses 64-byte blocks, and is 8-way set-associative. Which of the 40 physical address bits are used to specify the tile number? Provide an example page number that is assigned to tile 0.

Problem 1 Assume a large shared LLC that is tiled and distributed on the chip. Assume 16 tiles. Assume an OS page size of 8KB. The entire LLC has a size of 32 MB, uses 64-byte blocks, and is 8-way set-associative. Which of the 40 physical address bits are used to specify the tile number? Provide an example page number that is assigned to tile 0. The cache has 64K sets, i.e., 6 block offset bits, 16 index bits, and 18 tag bits. The address also has a 13-bit page offset, and 27 page number bits. Nine bits (bits 14-22) are used for the page number and the index bits. Any four of those bits can be used to designate the tile number, say, bits 19-22. An example page number assigned to tile 0 is xxx…xxx0000xxx…xxx bit 22 19 40 Tag 23 22 Index 7 6 Offset 1 40 Page number 14 13 Page offset 1

Virtual Memory Processes deal with virtual memory – they have the illusion that a very large address space is available to them There is only a limited amount of physical memory that is shared by all processes – a process places part of its virtual memory in this physical memory and the rest is stored on disk Thanks to locality, disk access is likely to be uncommon The hardware ensures that one process cannot access the memory of a different process

Address Translation The virtual and physical memory are broken up into pages 8KB page size Virtual address 13 virtual page number page offset Translated to phys page number Physical address 13 physical page number page offset Physical memory

Memory Hierarchy Properties A virtual memory page can be placed anywhere in physical memory (fully-associative) Replacement is usually LRU (since the miss penalty is huge, we can invest some effort to minimize misses) A page table (indexed by virtual page number) is used for translating virtual to physical page number The memory-disk hierarchy can be either inclusive or exclusive and the write policy is writeback

TLB Since the number of pages is very high, the page table capacity is too large to fit on chip A translation lookaside buffer (TLB) caches the virtual to physical page number translation for recent accesses A TLB miss requires us to access the page table, which may not even be found in the cache – two expensive memory look-ups to access one word of data! A large page size can increase the coverage of the TLB and reduce the capacity of the page table, but also increases memory waste

Problem 2 Build an example toy virtual memory system. Each program has 8 virtual pages. Two programs are running together. The physical memory can store 8 total pages. Show example contents of the physical memory, disk, page table, TLB. Assume that virtual pages take names a-z and physical pages take names A-Z. Processor Memory Disk TLB Page table

A B C D M N O Z EFGHPQ Problem 2 Build an example toy virtual memory system. Each program has 8 virtual pages. Two programs are running together. The physical memory can store 8 total pages. Show example contents of the physical memory, disk, page table, TLB. Assume that virtual pages take names a-z and physical pages take names A-Z. Processor Memory A B C D M N O Z Disk EFGHPQ Other Files TLB aA cC mM zZ Page table aA mM bB nN cC oO dD pP eE qQ fF gG hH

TLB and Cache Is the cache indexed with virtual or physical address? To index with a physical address, we will have to first look up the TLB, then the cache  longer access time Multiple virtual addresses can map to the same physical address – can we ensure that these different virtual addresses will map to the same location in cache? Else, there will be two different copies of the same physical memory word Does the tag array store virtual or physical addresses? Since multiple virtual addresses can map to the same physical address, a virtual tag comparison can flag a miss even if the correct physical memory word is present

TLB and Cache

index bits 64KB direct-mapped Virtually Indexed Caches 24-bit virtual address, 4KB page size  12 bits offset and 12 bits virtual page number To handle the example below, the cache must be designed to use only 12 index bits – for example, make the 64KB cache 16-way Page coloring can ensure that some bits of virtual and physical address match abcdef abbdef Virtually indexed cache cdef bdef Data cache that needs 16 index bits 64KB direct-mapped or 128KB 2-way… Page in physical memory

Cache and TLB Pipeline Virtually Indexed; Physically Tagged Cache Virtual address Offset Virtual page number Virtual index TLB Tag array Data array Physical page number Physical tag Physical tag comparion Virtually Indexed; Physically Tagged Cache

Problem 3 Assume that page size is 16KB and cache block size is 32 B. If I want to implement a virtually indexed physically tagged L1 cache, what is the largest direct-mapped L1 that I can implement? What is the largest 2-way cache that I can implement?

Problem 3 Assume that page size is 16KB and cache block size is 32 B. If I want to implement a virtually indexed physically tagged L1 cache, what is the largest direct-mapped L1 that I can implement? What is the largest 2-way cache that I can implement? There are 14 page offset bits. If 5 of them are used for block offset, there are 9 more that I can use for index. 512 sets  16KB direct-mapped or 32KB 2-way cache

Title Bullet