Date of download: 1/2/2018 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: Measurement of Strain in the Left Ventricle during Diastole with cine-MRI and.
Advertisements

Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Effect of Second Order Velocity-Slip/Temperature-Jump on Basic Gaseous Fluctuating.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Validation of a Pressure Diameter Method for Determining Modulus and Strain of.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Exchanger Design of Direct Evaporative Cooler Based on Outdoor and Indoor.
Date of download: 6/25/2016 Copyright © ASME. All rights reserved. From: The Effect of Gas Models on Compressor Efficiency Including Uncertainty J. Eng.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Optical Microscopy-Aided Indentation Tests J. Eng. Mater. Technol. 2008;130(1):
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Study on Hardness and Elastic Modulus of Surface Nanostructured 304 Stainless.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/6/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
From: Forced Flexural Gravity Wave Motion in Two-Layer Fluid
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Parallel Dynamic Optimization of Steel Risers
From: Three-Dimensional-Printing of Bio-Inspired Composites
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/5/2017 Copyright © ASME. All rights reserved.
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
From: Design of Axially Graded Columns Under a Central Force
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
From: A Damage-Mechanics-Based Constitutive Model for Solder Joints
From: Performance of a Zero-Energy House
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/30/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/6/2018 Copyright © ASME. All rights reserved.
Design of a Wireless Biological Signal Conditioning System1
Date of download: 3/4/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 1/2/2018 Copyright © ASME. All rights reserved. From: Elasticity of the Porcine Lens Capsule as Measured by Osmotic Swelling J Biomech Eng. 2010;132(9):091008-091008-9. doi:10.1115/1.4002024 Figure Legend: Anatomical and model schematic of ocular lens: (a) Anatomy of ocular lens. (b) Model schematic of ocular lens before placement in hypotonic solution and (c) after some time in hypotonic solution. The subscripts c and o refer to the core of the lens and the outside bath, respectively. Initially the lens is not swollen and a mushy zone does not exist. After placement in hypotonic solution, water penetrates the lens capsule and the lens fibers swell in layers. The swollen fibers constitute the mushy zone, and the interface between the mushy zone and the core marks the water front. The difference in osmolarity between the core and outside bath is the driving force for lens expansion, which is opposed by mechanical pressure from the stretched lens capsule.