Regression Assumptions of OLS.

Slides:



Advertisements
Similar presentations
Questions From Yesterday
Advertisements

Managerial Economics in a Global Economy
Welcome to Econ 420 Applied Regression Analysis
FACTORIAL ANOVA Overview of Factorial ANOVA Factorial Designs Types of Effects Assumptions Analyzing the Variance Regression Equation Fixed and Random.
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Quantitative Data Analysis: Hypothesis Testing
FACTORIAL ANOVA.
Multiple Linear Regression Introduction to Business Statistics, 5e Kvanli/Guynes/Pavur (c)2000 South-Western College Publishing.
Multivariate Data Analysis Chapter 4 – Multiple Regression.
Lesson #32 Simple Linear Regression. Regression is used to model and/or predict a variable; called the dependent variable, Y; based on one or more independent.
Predictive Analysis in Marketing Research
Topic 3: Regression.
Multiple Regression and Correlation Analysis
Empirical Estimation Review EconS 451: Lecture # 8 Describe in general terms what we are attempting to solve with empirical estimation. Understand why.
Summary of Quantitative Analysis Neuman and Robson Ch. 11
Week 14 Chapter 16 – Partial Correlation and Multiple Regression and Correlation.
Simple Linear Regression Analysis
Leedy and Ormrod Ch. 11 Gray Ch. 14
ANCOVA Lecture 9 Andrew Ainsworth. What is ANCOVA?
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
Multiple Regression The Basics. Multiple Regression (MR) Predicting one DV from a set of predictors, the DV should be interval/ratio or at least assumed.
Regression Analyses. Multiple IVs Single DV (continuous) Generalization of simple linear regression Y’ = b 0 + b 1 X 1 + b 2 X 2 + b 3 X 3...b k X k Where.
Multiple Regression Lab Chapter Topics Multiple Linear Regression Effects Levels of Measurement Dummy Variables 2.
Multiple Regression and Model Building Chapter 15 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
Lesson Multiple Regression Models. Objectives Obtain the correlation matrix Use technology to find a multiple regression equation Interpret the.
11 Chapter 12 Quantitative Data Analysis: Hypothesis Testing © 2009 John Wiley & Sons Ltd.
SW388R6 Data Analysis and Computers I Slide 1 Multiple Regression Key Points about Multiple Regression Sample Homework Problem Solving the Problem with.
Educational Research Chapter 13 Inferential Statistics Gay, Mills, and Airasian 10 th Edition.
Chapter 13 Multiple Regression
ANOVA: Analysis of Variance.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Model Building and Model Diagnostics Chapter 15.
I271B QUANTITATIVE METHODS Regression and Diagnostics.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
Handout Twelve: Design & Analysis of Covariance
Class 5 Multiple Regression CERAM February-March-April 2008 Lionel Nesta Observatoire Français des Conjonctures Economiques
Multiple Regression Analysis Regression analysis with two or more independent variables. Leads to an improvement.
Quantitative Methods. Bivariate Regression (OLS) We’ll start with OLS regression. Stands for  Ordinary Least Squares Regression. Relatively basic multivariate.
Chapter 14 Introduction to Regression Analysis. Objectives Regression Analysis Uses of Regression Analysis Method of Least Squares Difference between.
Lecturer: Ing. Martina Hanová, PhD.. Regression analysis Regression analysis is a tool for analyzing relationships between financial variables:  Identify.
Chapter 11 REGRESSION Multiple Regression  Uses  Explanation  Prediction.
Chapter 12 REGRESSION DIAGNOSTICS AND CANONICAL CORRELATION.
Yandell – Econ 216 Chap 15-1 Chapter 15 Multiple Regression Model Building.
REGRESSION G&W p
Bivariate & Multivariate Regression Analysis
Multiple Regression – Part I
B&A ; and REGRESSION - ANCOVA B&A ; and
Virtual COMSATS Inferential Statistics Lecture-26
Moderation, Mediation, and Other Issues in Regression
Multiple Regression Analysis and Model Building
Regression.
Chapter 13 Created by Bethany Stubbe and Stephan Kogitz.
Regression Analysis Simple Linear Regression
Week 14 Chapter 16 – Partial Correlation and Multiple Regression and Correlation.
Multiple Regression and Model Building
Multiple Regression.
Applied Statistical Analysis
BIVARIATE REGRESSION AND CORRELATION
CHAPTER 29: Multiple Regression*
6-1 Introduction To Empirical Models
Statistics for Business and Economics
Ass. Prof. Dr. Mogeeb Mosleh
I271b Quantitative Methods
Multiple Regression Chapter 14.
Simple Linear Regression
Regression Diagnostics
Chapter 13 Additional Topics in Regression Analysis
Presentation transcript:

Regression Assumptions of OLS

Assumptions of multiple regression Equal probability of selection (SRS) Linearity (visible and invisible variables) Independence of observations: Errors are uncorrelated The mean of error term is ALWAYS zero: Mean does not depend on x. Normality (of the error term) Homoskedasticity Variance does not depend on x. No multicollinearity

Homoskedasticity The variance of the error term is fixed (equal across all cases). Compliance with this assumption can be empirically checked. Consequences if violated: SE will be upward biased.

Multicollinearity Has to do with the quality of the information matrix. No linear combination of independent variables should be able to predict any other independent variable.

Multicollinearity - Dx Tolerance: VIF: Inverse of tolerance Indicates inflated standard errors >2 >2.5 Multiple correlation among IVs

Example: Regression with SPSS

Regression exercise Maternal aggression Child aggression Paternal Harsh parenting

Correlations

SPSS output

SPSS output

Regression exercise Maternal aggression Harsh parenting Child Paternal aggression

SPSS step 1: Harsh parenting

Step 2: Direct effects of mom

Step 3: Mediated effects of mom

Multicollinearity check

Including nominal Or ordinal Variables Regression Including nominal Or ordinal Variables

Categorical variables in regression

Association with DV

Dummy variables

Regression with dummy variables

ANOVA UNIANOVA kidagr BY harsh_o WITH momagr dadagr /METHOD = SSTYPE(3) /INTERCEPT = INCLUDE /CRITERIA = ALPHA(.05) /DESIGN = momagr dadagr harsh_o .

Regression Interaction effects

Moderated regression Maternal aggression Child aggression Paternal Harsh parenting

Moderated regression momdadagr = momagr*dadagr

Issues Related to Regression Homework

Issues Interpreting regression coefficients when measurement units are not meaningful Interval level, different units of measurement Legend of conceptual framework Test of mediated effects XYZ Atheoretical regression models Write-up Hypotheses Less…than According to conceptual framework Regression equations in text Decimal points

Regression & ANOVA: Wrap up

Common elements All of these models are linear: DV(s)=b1*IV1 + b2*IV2 + b3*IV3 All of these models assume a interval/ratio level DV. All of these models can handle categorical or interval/ratio IVs. All of these models use some form of least squares method (squared deviations from the mean).

Common elements All of these methods assume SRS (independence of observations). All of these methods assume homoskedasticity. All of these methods can only model “flat” and unidirectional effects.

ANOVA / Regression Differences arise from “traditions.” ANOVA  Experimental design Regression  Non-experimental/survey design. Differences in the yield of information: Regression is superior.

Within Subjects Designs Regression with fixed or random effects:

Factor Analyses Regression with an “unknown” IV:

HLMs Regression coefficients themselves are DVs.