From: Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography Trans. Vis. Sci.

Slides:



Advertisements
Similar presentations
From: Enhancement of Corneal Visibility in Optical Coherence Tomography Images Using Corneal Adaptive Compensation Trans. Vis. Sci. Tech ;4(3):3.
Advertisements

Invest. Ophthalmol. Vis. Sci ;54(14):ORSF68-ORSF80. doi: /iovs
Trans. Vis. Sci. Tech ;4(6):1. doi: /tvst Figure Legend:
From: Outer Segment Thickness Predicts Visual Field Response to QLT in Patients with RPE65 or LRAT Mutations Trans. Vis. Sci. Tech ;4(5):8.
From: A Single Wide-Field OCT Protocol Can Provide Compelling Information for the Diagnosis of Early Glaucoma Trans. Vis. Sci. Tech ;5(6):4. doi: /tvst
Trans. Vis. Sci. Tech ;3(7):10. doi: /tvst Figure Legend:
Trans. Vis. Sci. Tech ;6(1):5. doi: /tvst Figure Legend:
From: Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye Invest. Ophthalmol.
From: Microbead-Induced Ocular Hypertensive Mouse Model for Screening and Testing of Aqueous Production Suppressants for Glaucoma Invest. Ophthalmol. Vis.
From: Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes Invest. Ophthalmol. Vis. Sci..
From: The Structural Role of Elastic Fibers in the Cornea Investigated Using a Mouse Model for Marfan Syndrome Invest. Ophthalmol. Vis. Sci ;58(4):
From: Experimental Anterior Ischemic Optic Neuropathy in Diabetic Mice Exhibited Severe Retinal Swelling Associated With VEGF Elevation Invest. Ophthalmol.
From: Development of a Rat Schematic Eye From In Vivo Biometry and the Correction of Lateral Magnification in SD-OCT Imaging Invest. Ophthalmol. Vis. Sci..
From: Effects of Intraframe Distortion on Measures of Cone Mosaic Geometry from Adaptive Optics Scanning Light Ophthalmoscopy Trans. Vis. Sci. Tech ;5(1):10.
From: Temperature-Controlled Retinal Photocoagulation Reliably Generates Uniform Subvisible, Mild, or Moderate Lesions Trans. Vis. Sci. Tech ;4(5):9.
Trans. Vis. Sci. Tech ;5(6):5. doi: /tvst Figure Legend:
Trans. Vis. Sci. Tech ;2(4):1. doi: /tvst Figure Legend:
From: An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy Trans. Vis. Sci. Tech..
From: The Effect of Age on Optic Nerve Axon Counts, SDOCT Scan Quality, and Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in Rhesus Monkeys.
From: The Oral Iron Chelator Deferiprone Protects Against Retinal Degeneration Induced through Diverse Mechanisms Trans. Vis. Sci. Tech ;1(3):2.
From: Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation Trans. Vis. Sci. Tech ;3(4):3.
From: Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography.
From: Deficiency of SHP-1 Protein-Tyrosine Phosphatase in “Viable Motheaten” Mice Results in Retinal Degeneration Invest. Ophthalmol. Vis. Sci ;47(3):
From: Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses Trans. Vis. Sci. Tech..
From: Fundus Camera-Delivered Light-Induced Retinal Degeneration in Mice With the RPE65 Leu450Met Variant is Associated With Oxidative Stress and Apoptosis.
From: Experimental Application of Piezoelectric Actuator-Driven Pulsed Water Jets in Retinal Vascular Surgery Trans. Vis. Sci. Tech ;3(6):10. doi: /tvst
From: Effect of Cataract Surgery on Optical Coherence Tomography Measurements and Repeatability in Patients With Non-Insulin–Dependent Diabetes Mellitus.
From: Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography Trans. Vis. Sci.
From: Multimodal Imaging of Macular Telangiectasia Type 2: Focus on Vascular Changes Using Optical Coherence Tomography Angiography Invest. Ophthalmol.
Invest. Ophthalmol. Vis. Sci ;54(4): doi: /iovs Figure Legend:
Invest. Ophthalmol. Vis. Sci ;48(12): doi: /iovs Figure Legend:
From: VEGF: From Discovery to Therapy: The Champalimaud Award Lecture
From: Macular Choroidal Thickness and Volume in Normal Subjects Measured by Swept-Source Optical Coherence Tomography Invest. Ophthalmol. Vis. Sci ;52(8):
From: Error Correction and Quantitative Subanalysis of Optical Coherence Tomography Data Using Computer-Assisted Grading Invest. Ophthalmol. Vis. Sci..
From: Role of Caveolin-1 for Blocking the Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy Invest. Ophthalmol. Vis. Sci ;58(1):
From: Retinal Microglial Activation Following Topical Application of Intracellular Toll-Like Receptor Ligands Invest. Ophthalmol. Vis. Sci ;56(12):
From: Experimental Application of Piezoelectric Actuator-Driven Pulsed Water Jets in Retinal Vascular Surgery Trans. Vis. Sci. Tech ;3(6):10. doi: /tvst
From: Corneal Cross-Linking with Riboflavin and UV-A in the Mouse Cornea in Vivo: Morphological, Biochemical, and Physiological Analysis Trans. Vis. Sci.
Invest. Ophthalmol. Vis. Sci ;50(7): doi: /iovs Figure Legend:
Invest. Ophthalmol. Vis. Sci ;54(2): doi: /iovs Figure Legend:
From: An Experimental Protocol of the Model to Quantify Traction Applied to the Retina by Vitreous Cutters Invest. Ophthalmol. Vis. Sci ;51(8):
From: Efficacy and Safety of Human Retinal Progenitor Cells
From: Reengineering Human Bruch's Membrane Increases Rod Outer Segment Phagocytosis by Human Retinal Pigment Epithelium Trans. Vis. Sci. Tech ;4(5):10.
From: In Vivo Imaging of Microscopic Structures in the Rat Retina
From: Outer Segment Thickness Predicts Visual Field Response to QLT in Patients with RPE65 or LRAT Mutations Trans. Vis. Sci. Tech ;4(5):8.
From: Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye Invest. Ophthalmol. Vis. Sci ;57(2):
From: Cfh Genotype Interacts With Dietary Glycemic Index to Modulate Age-Related Macular Degeneration-Like Features in Mice Invest. Ophthalmol. Vis. Sci..
From: The Retinal Disease Screening Study: Prospective Comparison of Nonmydriatic Fundus Photography and Optical Coherence Tomography for Detection of.
Invest. Ophthalmol. Vis. Sci ;57(6): doi: /iovs Figure Legend:
From: Evaluating the Biostability of Yellow and Clear Intraocular Lenses with a System Simulating Natural Intraocular Environment Trans. Vis. Sci. Tech..
From: Evaluating the Biostability of Yellow and Clear Intraocular Lenses with a System Simulating Natural Intraocular Environment Trans. Vis. Sci. Tech..
Trans. Vis. Sci. Tech ;4(3):8. doi: /tvst Figure Legend:
From: Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye Invest. Ophthalmol. Vis. Sci ;57(2):
From: Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye Invest. Ophthalmol. Vis. Sci ;57(2):
From: Pediatric Perimeter—A Novel Device to Measure Visual Fields in Infants and Patients with Special Needs Trans. Vis. Sci. Tech ;6(4):3. doi: /tvst
From: Neural Stem Cells Derived by Small Molecules Preserve Vision
From: Natural Bioadhesive Biodegradable Nanoparticle-Based Topical Ophthalmic Formulations for Management of Glaucoma Trans. Vis. Sci. Tech ;4(3):12.
Invest. Ophthalmol. Vis. Sci ;57(2): doi: /iovs Figure Legend:
Trans. Vis. Sci. Tech ;6(1):5. doi: /tvst Figure Legend:
From: Arrested Foveal Development in Preterm Eyes: Thickening of the Outer Nuclear Layer and Structural Redistribution Within the Fovea Invest. Ophthalmol.
From: Corneal Cross-Linking with Riboflavin and UV-A in the Mouse Cornea in Vivo: Morphological, Biochemical, and Physiological Analysis Trans. Vis. Sci.
Trans. Vis. Sci. Tech ;5(4):9. doi: /tvst Figure Legend:
From: Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography Invest. Ophthalmol.
From: Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses Trans. Vis. Sci. Tech..
Figure Legend: From: Pathway to Retinal Oximetry
Trans. Vis. Sci. Tech ;6(4):5. doi: /tvst Figure Legend:
From: Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography Invest. Ophthalmol. Vis. Sci..
Invest. Ophthalmol. Vis. Sci ;55(7): doi: /iovs Figure Legend:
From: Fasudil, a Clinically Used ROCK Inhibitor, Stabilizes Rod Photoreceptor Synapses after Retinal Detachment Trans. Vis. Sci. Tech ;6(3):22. doi: /tvst
Intraretinal hyper-reflective lesions in the outer retina as observed in spectral-domain optical coherence tomography (SD-OCT) correspond to dilated capillaries.
Presentation transcript:

From: Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography Trans. Vis. Sci. Tech.. 2016;5(4):11. doi:10.1167/tvst.5.4.11 Figure Legend: Location of the superficial and deep plexus in the mouse retina. (A) Infrared fundus picture of the posterior pole of the mouse eye imaged with the OCT-A device. Yellow arrows indicate the selected area of the B-scan presented in (B). (B) Automatic segmentation of retinal layers using the Heidelberg Eye Explorer Software. The distance between the ILM and the IPL and between the IPL and the OPL was manually measured. (C) Based on the thickness measurements in (B) manual retinal layer segmentation was possible for the identification of the SVP (upper panel) and DVP (lower panel) located between the ILM and the outer boundary of the IPL and between the IPL and the outer boundary of the OPL, respectively. (D) Superficial (Sp) and deep (D) vessels are also visible in histology in the same retinal layers as described above. Arrows indicate vertical cuts of vessels in each layer. Scale bar, 100 μm. Date of download: 1/2/2018 The Association for Research in Vision and Ophthalmology Copyright © 2018. All rights reserved.