From: Sonic Hedgehog Expression and Role in Healing Corneal Epithelium

Slides:



Advertisements
Similar presentations
Invest. Ophthalmol. Vis. Sci ;49(10): doi: /iovs Figure Legend:
Advertisements

Invest. Ophthalmol. Vis. Sci ;49(10): doi: /iovs Figure Legend:
From: Iontophoresis Transcorneal Delivery Technique for Transepithelial Corneal Collagen Crosslinking With Riboflavin in a Rabbit Model Invest. Ophthalmol.
Invest. Ophthalmol. Vis. Sci ;49(7): doi: /iovs Figure Legend:
From: Postnatal Gene Expression in the Normal Mouse Cornea by SAGE
From: Postnatal Gene Expression in the Normal Mouse Cornea by SAGE
From: Blocking Endothelin-B Receptors Rescues Retinal Ganglion Cells from Optic Nerve Injury through Suppression of Neuroinflammation Invest. Ophthalmol.
From: Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration Invest. Ophthalmol. Vis. Sci ;52(5):
Invest. Ophthalmol. Vis. Sci ;44(9): doi: /iovs Figure Legend:
From: Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.
From: CXCL10 Is Required to Maintain T-Cell Populations and to Control Parasite Replication during Chronic Ocular Toxoplasmosis Invest. Ophthalmol. Vis.
From: Lectin from Agaricus bisporus Inhibited S Phase Cell Population and Akt Phosphorylation in Human RPE Cells Invest. Ophthalmol. Vis. Sci ;53(12):
From: Effect of the Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) on Corneal Endothelial Wound Healing Invest. Ophthalmol. Vis. Sci ;57(3):
From: Low Levels of Hydrogen Peroxide Stimulate Corneal Epithelial Cell Adhesion, Migration, and Wound Healing Invest. Ophthalmol. Vis. Sci ;52(3):
From: Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye Invest. Ophthalmol.
From: Regulation of Cdc42 Expression and Signaling Is Critical for Promoting Corneal Epithelial Wound Healing Invest. Ophthalmol. Vis. Sci ;54(8):
From: The Use of Human Mesenchymal Stem Cell–Derived Feeder Cells for the Cultivation of Transplantable Epithelial Sheets Invest. Ophthalmol. Vis. Sci..
Invest. Ophthalmol. Vis. Sci ;58(2): doi: /iovs Figure Legend:
From: The Use of Autologous Serum in the Development of Corneal and Oral Epithelial Equivalents in Patients with Stevens-Johnson Syndrome Invest. Ophthalmol.
Invest. Ophthalmol. Vis. Sci ;43(6): Figure Legend:
From: Development of a Rat Schematic Eye From In Vivo Biometry and the Correction of Lateral Magnification in SD-OCT Imaging Invest. Ophthalmol. Vis. Sci..
Invest. Ophthalmol. Vis. Sci ;56(1): doi: /iovs Figure Legend:
Invest. Ophthalmol. Vis. Sci ;54(9): doi: /iovs Figure Legend:
From: Preservation of Retina Ganglion Cell Function by Morphine in a Chronic Ocular-Hypertensive Rat Model Invest. Ophthalmol. Vis. Sci ;53(7):
From: Klf4 Regulates the Expression of Slurp1, Which Functions as an Immunomodulatory Peptide in the Mouse Cornea Invest. Ophthalmol. Vis. Sci ;53(13):
From: Long-Term, Targeted Genetic Modification of the Aqueous Humor Outflow Tract Coupled with Noninvasive Imaging of Gene Expression In Vivo Invest. Ophthalmol.
From: Controlled Delivery of 5-Chlorouracil Using Poly(Ortho Esters) in Filtering Surgery for Glaucoma Invest. Ophthalmol. Vis. Sci ;49(7):
The Chemokine Receptor CX3CR1 Mediates Homing of MHC class II-Positive Cells to the Normal Mouse Corneal Epithelium Invest. Ophthalmol. Vis. Sci ;48(4):
From: Elevated Expression of O-GlcNAc–Modified Proteins and O-GlcNAc Transferase in Corneas of Diabetic Goto-Kakizaki Rats Invest. Ophthalmol. Vis. Sci..
From: Short Pulse of Clinical Concentration of Bevacizumab Modulates Human Retinal Pigment Epithelial Functionality Invest. Ophthalmol. Vis. Sci ;57(3):
From: Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation Invest.
From: Early Corneal Nerve Damage and Recovery Following Small Incision Lenticule Extraction (SMILE) and Laser In Situ Keratomileusis (LASIK) Invest. Ophthalmol.
Figure Legend: From: Lymphatic Markers in the Adult Human Choroid
From: Modeling Keratoconus Using Induced Pluripotent Stem Cells
From: Stiffening of Rabbit Corneas by the Bacteriochlorophyll Derivative WST11 Using Near Infrared Light Invest. Ophthalmol. Vis. Sci ;53(10):
Invest. Ophthalmol. Vis. Sci ;50(11): doi: /iovs Figure Legend:
From: Anti-Inflammatory and Antioxidative Effects of Camellia japonica on Human Corneal Epithelial Cells and Experimental Dry Eye: In Vivo and In Vitro.
Invest. Ophthalmol. Vis. Sci ;50(8): doi: /iovs Figure Legend:
From: Cibinetide Improves Corneal Nerve Fiber Abundance in Patients With Sarcoidosis-Associated Small Nerve Fiber Loss and Neuropathic Pain Invest. Ophthalmol.
From: Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats Invest. Ophthalmol. Vis. Sci..
From: Retinal Stem Cells Transplanted into Models of Late Stages of Retinitis Pigmentosa Preferentially Adopt a Glial or a Retinal Ganglion Cell Fate Invest.
From: Role of Caveolin-1 for Blocking the Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy Invest. Ophthalmol. Vis. Sci ;58(1):
From: Evaluation of Corneal Displacement Using High-Speed Photography at the Early and Late Phases of Noncontact Tonometry Invest. Ophthalmol. Vis. Sci..
From: In Vitro Interactions between Peripheral Blood Lymphocytes and the Wong-Kilbourne Derivative of Chang Conjunctival Cells Invest. Ophthalmol. Vis.
From: Blocking Endothelin-B Receptors Rescues Retinal Ganglion Cells from Optic Nerve Injury through Suppression of Neuroinflammation Invest. Ophthalmol.
From: MicroRNA-200b Downregulates Oxidation Resistance 1 (Oxr1) Expression in the Retina of Type 1 Diabetes Model Invest. Ophthalmol. Vis. Sci ;54(3):
From: Defective Angiogenesis and Intraretinal Bleeding in Mouse Models With Disrupted Inner Retinal Lamination Invest. Ophthalmol. Vis. Sci ;57(4):
From: A Hierarchy of Proliferative Cells Exists in Mouse Lens Epithelium: Implications for Lens Maintenance Invest. Ophthalmol. Vis. Sci ;47(7):
Invest. Ophthalmol. Vis. Sci ;50(6): doi: /iovs Figure Legend:
From: Induction of Functional 3D Ciliary Epithelium–Like Structure From Mouse Induced Pluripotent Stem Cells Invest. Ophthalmol. Vis. Sci ;57(1):
From: Otago Glaucoma Surgery Outcome Study: Tissue Matrix Breakdown by Apoptotic Cells in Capsules Surrounding Molteno Implants Invest. Ophthalmol. Vis.
From: Inhibition of miR-205 Impairs the Wound-Healing Process in Human Corneal Epithelial Cells by Targeting KIR4.1 (KCNJ10) Invest. Ophthalmol. Vis. Sci..
From: A Frameshift Mutation in RPGR Exon ORF15 Causes Photoreceptor Degeneration and Inner Retina Remodeling in a Model of X-Linked Retinitis Pigmentosa.
From: Involucrin Expression in the Corneal Epithelium: An Essential Role for Sp1 Transcription Factors Invest. Ophthalmol. Vis. Sci ;46(9):
From: Transmission Electron Microscopy Analysis of Epithelial Basement Membrane Repair in Rabbit Corneas With Haze Invest. Ophthalmol. Vis. Sci ;54(6):
From: Comparison of FRPE and Human Embryonic Stem Cell–Derived RPE Behavior on Aged Human Bruch's Membrane Invest. Ophthalmol. Vis. Sci ;52(8):
Invest. Ophthalmol. Vis. Sci ;56(12): doi: /iovs Figure Legend:
From: Cfh Genotype Interacts With Dietary Glycemic Index to Modulate Age-Related Macular Degeneration-Like Features in Mice Invest. Ophthalmol. Vis. Sci..
Invest. Ophthalmol. Vis. Sci ;57(6): doi: /iovs Figure Legend:
Invest. Ophthalmol. Vis. Sci ;53(9): doi: /iovs Figure Legend:
From: VEGF Antagonists Decrease Barrier Function of Retinal Pigment Epithelium In Vitro: Possible Participation of Intracellular Glutathione Invest. Ophthalmol.
From: Source-Dependent Intracellular Distribution of Iron in Lens Epithelial Cells Cultured Under Normoxic and Hypoxic Conditions Invest. Ophthalmol. Vis.
From: Phosphatase-Mediated Crosstalk Control of ERK and p38 MAPK Signaling in Corneal Epithelial Cells Invest. Ophthalmol. Vis. Sci ;47(12):
From: Photic Injury to Cultured RPE Varies Among Individual Cells in Proportion to Their Endogenous Lipofuscin Content as Modulated by Their Melanosome.
From: Pressure-Induced Regulation of IL-6 in Retinal Glial Cells: Involvement of the Ubiquitin/Proteasome Pathway and NFκB Invest. Ophthalmol. Vis. Sci..
From: Scanning Laser Polarimetry with Variable Corneal Compensation: Identification and Correction for Corneal Birefringence in Eyes with Macular Disease.
Invest. Ophthalmol. Vis. Sci ;52(6): doi: /iovs Figure Legend:
From: Overexpression of SIRT1 Promotes High Glucose–Attenuated Corneal Epithelial Wound Healing via p53 Regulation of the IGFBP3/IGF-1R/AKT Pathway Invest.
From: Cellular Reorganization in the Human Retina during Normal Aging
Invest. Ophthalmol. Vis. Sci ;55(7): doi: /iovs Figure Legend:
Presentation transcript:

From: Sonic Hedgehog Expression and Role in Healing Corneal Epithelium Invest. Ophthalmol. Vis. Sci.. 2004;45(8):2577-2585. doi:10.1167/iovs.04-0001 Figure Legend: Activation of Gli-3 signaling and proliferation of epithelial cells in healing epithelium postdebridement in vivo. (a) Immunofluorescent detection of Gli-3 in healing rat corneal and limbal epithelium. Gli-3 protein is observed in the cell cytoplasm of normal, uninjured, corneal (aA) and limbal (aB) epithelia. At 2 hours postdebridement, nuclei of healing corneal epithelium remain negative for Gli-3 (aC), whereas nuclear translocation of Gli-3 was detected in limbal epithelium (arrows, aD). Gli-3 protein is then observed in many cell nuclei of migrating epithelium at 6 hours (arrows, aE) and 12 hours (data not shown) postinjury. At these timepoints only a few limbal basal cells show a nuclear Gli-3 immunoreactivity (arrow, aF). At 24 hours postinjury, Gli-3 immunofluorescent staining is no longer observed in both corneal (aG) and limbal (aH) epithelia. Inset in (aD): a high magnification picture of nuclear localization of Gli-3. Bar, 100 μm. (b) Distribution of Ki67-positive cells in corneal epithelium at intervals of healing postdebridement. Many Ki67-labeled cells are observed in the basal layer of uninjured corneal epithelium (bA, bB). The number of Ki67-positive cells decreases in healing epithelia at 1 hour (not illustrated), 2 hours (bC, bD), and 6 hours (bE, bF) postdebridement. At 12 hours postinjury, the healing epithelium is still less proliferative, whereas many of the repopulated keratocytes are labeled with anti-Ki67 antibody (not illustrated). At 24 hours, nuclei of many cells of central epithelium resurfacing the defect are labeled with anti-Ki67 antibody (bG, bH). Immunofluorescent staining (bB, bD, bF, and bH: DAPI nuclear staining). (c) Histogram of Ki67-positive epithelial cells at each healing interval. Bar, 100 μm. Date of download: 1/3/2018 The Association for Research in Vision and Ophthalmology Copyright © 2018. All rights reserved.