VI. Other Time Frequency Distributions

Slides:



Advertisements
Similar presentations
An Introduction to Time-Frequency Analysis
Advertisements

117 V. Wigner Distribution Function Definition 1: Definition 2: Another way for computation Definition 1: Definition 2: V-A Wigner Distribution Function.
Shearing NAME : YI-WEI CHEN STUDENT NUMBER : R
: Arrange the Numbers ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11481: Arrange the Numbers 解題者:李重儀 解題日期: 2008 年 9 月 13 日 題意: 將數列 {1,2,3, …,N}
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
1 Q10276: Hanoi Tower Troubles Again! 星級 : ★★★ 題組: Online-judge.uva.es PROBLEM SET Volume CII 題號: Q10276: Hanoi Tower Troubles Again! 解題者:薛祖淵 解題日期: 2006.
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
3Com Switch 4500 切VLAN教學.
Properties of continuous Fourier Transforms
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
1 政治大學財政所與東亞所選修 -- 應用計量分析 -- 中國財政研究 黃智聰 政治大學財政所與東亞所選修 課程名稱:應用計量分析 -- 中國財政研究 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
學期報告須知 吳槐桂 Department of ET, JUST. 2 報告內容要求 報告內容 :  網路相關 網際網路, 醫療資訊系統, 遠距照護系統, Bluetooth, IEEE , IEEE 其他感測網路標準 …… 等  和上課內容相關 IEEE ,
1 政治大學公企中心必修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學公企中心必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G.
1 開南大學公管所與國企所合開選修課 -- 量化分析與應用 -- 黃智聰 開南大學公管所與國企所合開選修課 課程名稱:量化分析與應用 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
1 透過 IT 電子商務和知識管 理應用之探討 指導老師:李富民 教授 報告者:許志傑 學號: 職 1A 報告日期 :97/01/14.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
: Count DePrimes ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11408: Count DePrimes 解題者:李育賢 解題日期: 2008 年 9 月 2 日 題意: 題目會給你二個數字 a,b( 2 ≦ a ≦ 5,000,000,a.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
Dynamic Multi-signatures for Secure Autonomous Agents Panayiotis Kotzanikolaou Mike Burmester.
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
1 政治大學國務院國安碩專班選修課 -- 社會科學研究方法(量化分析) -- 黃智聰 政治大學國務院國安碩專班選修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰 授課內容: 簡單線性迴歸模型: 共線性與虛擬變數 參考書目: Hill, C. R., W. E. Griffiths, and.
: GCD - Extreme II ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11426: GCD - Extreme II 解題者:蔡宗翰 解題日期: 2008 年 9 月 19 日 題意: 最多 20,000 組測資,題目會給一個數字.
H.264 Motion Estimation Implement in Equator DSP Shu-Fan Chang 2003/10/29 音 視 訊 專 題音 視 訊 專 題.
質數 (Prime) 相關問題 (III) — 如何找出相對大的質數 Date: May 27, 2009 Introducer: Hsing-Yen Ann.
Extreme Discrete Summation ★★★★☆ 題組: Contest Archive with Online Judge 題號: Extreme Discrete Summation 解題者:蔡宗翰 解題日期: 2008 年 10 月 13 日.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
電腦的基本單位 類比訊號 (analog signal) 指的是連續的訊號 數位訊號 (digital signal) 指的是以預先定義的符號表示不連續 的訊號 one bit 8 bits=one byte 電腦裡的所有資料,包括文 字、數據、影像、音訊、視 訊,都是用二進位來表示的。
電腦的基本單位 類比訊號 (analog signal) 指的是連續的訊號
: Problem E Antimatter Ray Clearcutting ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11008: Problem E Antimatter Ray Clearcutting 解題者:林王智瑞.
On the Security of Some Proxy Signature Schemes (2003 年 6 月 Authors : Hung-Min Sun( 孫宏民 ) Bin-Tsan Hsieh( 謝濱燦 ) Presented by Hsin-Yu.
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
: Searching for Nessy ★☆☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 11044: Searching for Nessy 解題者:王嘉偉 解題日期: 2007 年 5 月 22 日 題意: 給定 case 數量.
資料結構實習-六.
協助孩子從閱讀學習英文 吳敏而 香港教育學院 家長的責任   安排學習空間   安排學習材料   安排學習時間   陪孩子   關懷孩子   鼓勵孩子.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
青少年認知發展.
Presenter: Hong Wen-Chih 2015/8/11. Outline Introduction Definition of fractional fourier transform Linear canonical transform Implementation of FRFT/LCT.
Introduction of Fractional Fourier Transform (FRFT) Speaker: Chia-Hao Tsai Research Advisor: Jian-Jiun Ding Digital Image and Signal Processing Lab Graduate.
Chapter 5 Laplace Transforms
Fourier Transforms Section Kamen and Heck.
Sep.2008DISP Time-Frequency Analysis 時頻分析  Speaker: Wen-Fu Wang 王文阜  Advisor: Jian-Jiun Ding 丁建均 教授   Graduate.
1 Review of Continuous-Time Fourier Series. 2 Example 3.5 T/2 T1T1 -T/2 -T 1 This periodic signal x(t) repeats every T seconds. x(t)=1, for |t|
Chapter 5: Fourier Transform.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
189 VII. Motions on the Time-Frequency Distribution (1) Horizontal shifting (2) Vertical shifting (3) Dilation (4) Shearing (5) Generalized Shearing (6)
FrFT and Time-Frequency Distribution 分數傅立葉轉換與時頻分析 Guo-Cyuan Guo 郭國銓 指導教授 :Jian Jiun Ding 丁建均 Institute of Communications Engineering National Taiwan University.
The Fractional Fourier Transform and Its Applications Presenter: Pao-Yen Lin Research Advisor: Jian-Jiun Ding, Ph. D. Assistant professor Digital Image.
教學觀摩會 電信系 謝世福 課程網頁進度表 學習指標  難度 : ★☆  重要性 : ★★★ ★★★  厭惡感 : ★★★ 上課日期課程進度、內容、主題 Feb 18(Mon) 1.Definitions of Signals and Systems. 2.Signal.
An Introduction to Time-Frequency Analysis Speaker: Po-Hong Wu Advisor: Jian-Jung Ding Digital Image and Signal Processing Lab GICE, National Taiwan University.
419 XIV. Discrete Wavelet Transform (I) (1) discrete input to discrete output (3) 忽略了 scaling function 和 mother wavelet function 的分析 但是保留了階層式的架構 14.1 概念.
153 VI. Other Time Frequency Distributions Main Reference [Ref] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 6,
Oh-Jin Kwon, EE dept., Sejong Univ., Seoul, Korea: 2.3 Fourier Transform: From Fourier Series to Fourier Transforms.
ENEE 322: Continuous-Time Fourier Transform (Chapter 4)
UNIT-II FOURIER TRANSFORM
Signals & systems Ch.3 Fourier Transform of Signals and LTI System
Homework 2 (Due: 17th Nov.) (1) What are the advantages and the disadvantages of the recursive method for implementing the STFT?
CE Digital Signal Processing Fall Discrete-time Fourier Transform
LECTURE 11: FOURIER TRANSFORM PROPERTIES
VIII. Motions on the Time-Frequency Distribution
VII. Other Time Frequency Distributions (II)
Chapter 2. Fourier Representation of Signals and Systems
UNIT II Analysis of Continuous Time signal
The Fractional Fourier Transform and Its Applications
Signals & Systems (CNET - 221) Chapter-5 Fourier Transform
Signals & Systems (CNET - 221) Chapter-4
LECTURE 11: FOURIER TRANSFORM PROPERTIES
Presentation transcript:

VI. Other Time Frequency Distributions Main Reference [Ref] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 6, Prentice Hall, N.J., 1996. Requirements for time-frequency analysis: (1) higher clarity (2) avoid cross-term (3) less computation time (4) good mathematical properties tradeoff

VI-A Cohen’s Class Distribution VI-A-1 Ambiguity Function (1) If

WDF and AF for the signal with only 1 term

(2) If x1(t) x2(t)

When 1 ≠ 2 When 1 = 2

WDF and AF for the signal with 2 terms auto term |WDF| (t1, f1) cross terms (t , f) t (t2, f2) |AF| cross term auto term (td , fd) auto terms (0, 0) cross term (-td , -fd)

For the ambiguity function The auto term is always near to the origin The cross-term is always far from the origin

VI-A-2 Definition of Cohen’s Class Distribution The Cohen’s Class distribution is a further generalization of the Wigner distribution function where is the ambiguity function (AF). (, ) = 1  WDF

How does the Cohen’s class distribution avoid the cross term? Chose (, ) low pass function. (, )  1 for small | |, |  | (, )  0 for large | |, |  | [Ref] L. Cohen, “Generalized phase-space distribution functions,” J. Math. Phys., vol. 7, pp. 781-806, 1966. [Ref] L. Cohen, Time-Frequency Analysis, Prentice-Hall, New York, 1995.

VI-A-3 Several Types of Cohen’s Class Distribution Choi-Williams Distribution (One of the Cohen’s class distribution) [Ref] H. Choi and W. J. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE. Trans. Acoustics, Speech, Signal Processing, vol. 37, no. 6, pp. 862-871, June 1989.

Cone-Shape Distribution (One of the Cohen’s class distribution) [Ref] Y. Zhao, L. E. Atlas, and R. J. Marks, “The use of cone-shape kernels for generalized time-frequency representations of nonstationary signals,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. 38, no. 7, pp. 1084-1091, July 1990.

Cone-Shape distribution for the example on pages 86, 126  = 1

Levin (Margenau-Hill) Distributions (, ) Wigner 1 Choi-Williams Cone-Shape Page Levin (Margenau-Hill) Kirkwood Born-Jordan 註:感謝 2007年修課的王文阜同學

VI-A-4 Advantages and Disadvantages of Cohen’s Class Distributions The Cohen’s class distribution may avoid the cross term and has higher clarity. However, it requires more computation time and lacks of well mathematical properties. Moreover, there is a tradeoff between the quality of the auto term and the ability of removing the cross terms.

VI-A-5 Implementation for the Cohen’s Class Distribution 簡化法 1:不是所有的 Ax(, ) 的值都需要算出 If for || > B or || > C

簡化法 2:注意, 這個參數和input 及output 都無關

VI-B Modified Wigner Distribution Function where X(f) = FT[x(t)] Modified Form I Modified Form II

Modified Form III (Pseudo L-Wigner Distribution) 增加 L 可以減少 cross term 的影響 (但是不會完全消除) [Ref] L. J. Stankovic, S. Stankovic, and E. Fakultet, “An analysis of instantaneous frequency representation using time frequency distributions-generalized Wigner distribution,” IEEE Trans. on Signal Processing, pp. 549-552, vol. 43, no. 2, Feb. 1995 P.S.: 感謝2006年修課的林政豪同學

Modified Form IV (Polynomial Wigner Distribution Function) When q = 2 and d1 = d-1 = 0.5, it becomes the original Wigner distribution function. It can avoid the cross term when the order of phase of the exponential function is no larger than q/2 + 1. However, the cross term between two components cannot be removed. [Ref] B. Boashash and P. O’Shea, “Polynomial Wigner-Ville distributions & their relationship to time-varying higher order spectra,” IEEE Trans. Signal Processing, vol. 42, pp. 216–220, Jan. 1994. [Ref] J. J. Ding, S. C. Pei, and Y. F. Chang, “Generalized polynomial Wigner spectrogram for high-resolution time-frequency analysis,” APSIPA ASC, Kaohsiung, Taiwan, Oct. 2013.

dl should be chosen properly such that If when q = 2

When q = 4

q = ?

VI-C Gabor-Wigner Transform [Ref] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans. Signal Processing, vol. 55, no. 10, pp. 4839-4850, Oct. 2007. Advantages: combine the advantage of the WDF and the Gabor transform advantage of the WDF  higher clarity advantage of the Gabor transform  no cross-term

x(t) = cos(2πt)

(a) (b) (c) (d) (b)、(c) are real

思考: (1) Which type of the Gabor-Wigner transform is better? (2) Can we further generalize the results?

Implementation of the Gabor-Wigner Transform :簡化技巧 (1) When Gx(t, f)  0, 先算 Gx(t, f) Wx(t, f) 只需算 Gx(t, f) 不近似於 0 的地方 (2) When x(t) is real,對 Gabor transform 而言 if x(t) is real, where X(f) = FT[x(t)]

附錄六: Fourier Transform 常用的性質 (1) Recovery (inverse Fourier transform) (2) Integration (3) Modulation (4) Time Shifting (5) Scaling (6) Time Reverse

(7) Real / Imaginary Input If x(t) is real, then X(f) = X*(f); If x(t) is pure imaginary, then X(f) = X*(f) (8) Even / Odd Input If x(t) = x(t), then X(f) = X(f); If x(t) = x(t), then X(f) = X(f); (9) Conjugation (10) Differentiation (11) Multiplication by t (12) Division by t (13) Parseval’s Theorem (Energy Preservation) (14) Generalized Parseval’s Theorem

(15) Linearity (16) Convolution If then (17) Multiplication If , then (18) Correlation (19) Two Times of Fourier Transforms (20) Four Times of Fourier Transforms