Middle Ear Functions Impedance Matching -- amplification of sounds to overcome difference in impedance between the air of EAC and the fluid of the inner.

Slides:



Advertisements
Similar presentations
ANATOMY AND PHYSIOLOGY OF THE EAR
Advertisements

Hearing and Deafness 1. Anatomy & physiology Chris Darwin Web site for lectures, lecture notes and filtering lab:
ECE 598: The Speech Chain Lecture 10: Auditory Physiology.
Hearing Anatomy of the auditory pathway Hair cells and transduction of sound waves Regional specialization of the cochlea to respond to different frequencies.
Topic 12 The Auditory and Vestibular Systems Lange
Cochlear Functions Transduction- Converting acoustical- mechanical energy into electro-chemical energy. Frequency Analysis-Breaking sound up.
Sound Transduction 1 Or, if the a tree falls in a forest and no one is around does it still reflect light?
Mechanoreception – Audition and Equilibrium
Structure of the Ear Goldstein, pp. 343 – 360 CWE, pp. 187 – 204
Physiology of the cochlea Mechanical response of cochlea in response to sound Two major functions: 1. Analysis of sound into components: Frequency/Spectral.
Chapter 11 The Auditory and Vestibular Systems
The Vestibule The utricle extends into the _ These sacs: – House ___________________________________ called maculae – Respond to _______________________________.
Chapter 11 The Auditory and Vestibular Systems
Auditory System 1 1) Physical properties of sound
The Vestibule The utricle extends into the _ These sacs: – House ___________________________________ called maculae – Respond to _______________________________.
The “Ear” is housed within the
The Inner Ear SPA 4302 Summer Two Halves: ____________--transduces motion and pull of gravity ____________-transduces sound energy (Both use Hair.
S 319 < Auditory system >
A&P Unit 4 Lecture 6A.
Two Halves: §Vestibular--transduces motion and pull of gravity §Cochlear--transduces sound energy (Both use Hair Cells) INNER EAR.
Ears, Hearing.
Hearing and Deafness Anatomy & physiology. Protection Impedance match Capture; Amplify mid-freqs Vertical direction coding Frequency analysis Transduction.
Cochlea Conduction & Reception of Auditory Stimuli.
Hearing Anatomy.
THE INNER EAR Two Sensory Divisions; one dedicated to hearing, the other to maintaining balance Vestibular Division - The balance organs - SC Canals -
Auditory Sensation (Hearing) L13
© 2011 The McGraw-Hill Companies, Inc. Instructor name Class Title, Term/Semester, Year Institution Introductory Psychology Concepts Hearing.
Inner Ear 2.
Physiology Behrouz Mahmoudi Hearing System 1.
ANATOMY AND PHYSIOLOGY OF THE EAR
Anatomy and Physiology of the Ear
Sound Transduction 2 Or how my phase got all locked up Announcements: Now Online. Get assignments, lecture notes and other.
Transmission of Sound to the Inner Ear The route of sound to the inner ear follows this pathway: – Outer ear – Middle ear – Inner ear scalas vestibuli.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings  Hearing – allows us to detect and interpret sound waves  Equilibrium – inform.
Review of Cochlear Anatomy Bony Capsule Bony Capsule Semicircular Canals Semicircular Canals Vestibule Vestibule Scala Tympani Scala Tympani Scala Vestibuli.
Auditory Transduction The Inner Ear Outer Ear Pinna collects the sound and directs it to ear canal Because of the length of the ear canal, it.
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
The Ear Change the graphics to symbolize different functions of the ear that are brought up on the next slide.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Innervation Anteriorly auriculotemporal nerve V3 posterior superior CN 7 posterior inferior and floor CN 9 (Jacobsen) +10 (Arnold) clockwise EAC -2.5 cm.
The Outer Ear Consists of:
EAR.
52 The Sense of Hearing Dr. A.R. Jamshidi Fard 2011.
Acoustic reflex Protective function Protective function Due to muscle contraction in response to intense sound Due to muscle contraction in response to.
The Traveling Wave. Reminder 2 Frequency Amplitude Frequency Phase Frequency domain Time domain (time) waveform Amplitude spectrum.
ANATOMY OF THE EAR. Pinna External Auditory Meatus.
Inner Ear Overview Cochlea Organ of Corti Hair Cells Basilar Membrane.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 15 The Special Senses:
The Inner Ear SPA 4302 Summer 2004.
Auditory System Lesson 14. The Stimulus n What kind of energy is sound? l mechanical l movement of air molecules n Waves l intensity = amplitude l pitch.
Labyrinths contain Three parts Three parts Semicircular canals Semicircular canals Vestibular system Vestibular system Vestibule Vestibule Cochlea Auditory.
LEARNING OBJECTIVES: L28 LEARNING OBJECTIVES: L28 Know the functional organisation of the external ear, middle ear & inner ear [organ of Corti, semicircular.
Anatomy of the Ear Three Main Sections
Ear Ossicles Malleus, incus, and stapes Transmit vibrations to the oval window Dampened by the tensor tympani and stapedius muscles.
The Ear, Hearing and Balance
Hearing. (Perception of Sound)
Hearing. (Perception of Sound)
Events in the Stimulation
A, Representation of the human inner ear
Hearing. (Perception of Sound)
Peripheral auditory mechanisms
The Auditory Pathway This graphic depicts the events in the stimulation of auditory receptors, from channeling sound waves into the external ear and onto.
Human Anatomy & Physiology I
Structure of the Inner Ear and Its Mechanical Response
ANATOMY AND PHYSIOLOGY OF THE EAR (HEARING)
Auditory System Lecture 13.
The cochlea Current Biology
The Special Senses Hearing
ANATOMY AND PHYSIOLOGY OF THE EAR
Electroacoustics Prof. Andrzej Dobrucki, PhD Maurycy Kin and Prof. Krzysztof Opieliński The chair of Acoustics and Multimedia, Wrocław University of Science.
Presentation transcript:

Middle Ear Functions Impedance Matching -- amplification of sounds to overcome difference in impedance between the air of EAC and the fluid of the inner ear. Filtering -- resonant frequency is approximately 1000 Hz, functions as bandpass filter. Acoustic Reflex -- Contraction of Stapedius muscle in response to loud sounds

INNER EAR Two Halves: Vestibular--transduces motion and pull of gravity Cochlear--transduces sound energy (Both use Hair Cells)

Subdivision into spaces containing endolymph (blue), and spaces containing perilymph (red)

Cochlea is Divided into 3 “Scala” Scala Vestibuli Reissner’s Membrane Scala Media Basilar Membrane Scala Tympani Helicotrema - the opening between 2 outer Scala

Fluids filling the Inner Ear Perilymph- in S. Vestibuli and S. Tympani High Sodium / Low Potassium concentrations Low Voltage (0 to +5 mV) Endolymph- in S. Media High Potassium / Low Sodium concentrations High Positive Voltage (85 mV)

Cross-Section of the Cochlea Third Turn Second Turn First Turn

A Cross Section Shows the 3 Scala

Within S. Media is the Organ of Corti

I = Inner Hair Cells P = Pillar Cells O = Outer Hair Cells D = Deiter’s Cells

The Stereocilia on IHCs and OHCs OHCs (at top) V or W shaped ranks IHC (at bottom) straight line ranks

Cochlear Functions Transduction- Converting acoustical-mechanical energy into electro-chemical energy. Frequency Analysis-Breaking sound up into its component frequencies

Transduction- Inner Hair Cells are the true sensory transducers, converting motion of stereocilia into neurotransmitter release. Mechanical Electro-chemical Outer Hair Cells have both forward and reverse transduction-- Mechanical  Electro-chemical Mechanical Electro-chemical

Frequency Analysis - the Traveling Wave Bekesy studied cochleae from cadavers, developed the Traveling Wave theory 1. Response always begins at the base 2. Amplitude grows as it travels apically 3. Reaches a peak at a point determined by frequency of the sound 4. Vibration then dies out rapidly