From: Mechanics of Cell Mechanosensing on Patterned Substrate

Slides:



Advertisements
Similar presentations
Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Collagen Structure and Mechanical Properties of the Human Sclera: Analysis for.
Advertisements

Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: In Vitro Quantification of Time Dependent Thrombus Size Using Magnetic Resonance.
Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: Mechanics of Random Discontinuous Long-Fiber Thermoplastics—Part I: Generation.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Stochastic Morphological Modeling of Random Multiphase Materials J. Appl. Mech.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Optical Microscopy-Aided Indentation Tests J. Eng. Mater. Technol. 2008;130(1):
Date of download: 7/5/2016 Copyright © ASME. All rights reserved. From: Flexure-Based Device for Cyclic Strain-Mediated Osteogenic Differentiation J Biomech.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Modeling of Heat Transfer in a Moving Packed Bed: Case of the Preheater in Nickel.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Delamination Detection-Oriented Finite Element Model for a Fiber Reinforced Polymer.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Development and Modeling of Melt Electrohydrodynamic-Jet Printing of Phase-Change.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Study on Hardness and Elastic Modulus of Surface Nanostructured 304 Stainless.
Date of download: 9/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
From: Elastic Theory of Nanomaterials Based on Surface-Energy Density
From: Burst Oscillations in the Accelerating Bicycle
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
From: Post-Buckling Analysis of Curved Beams
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
From: Aerodynamics of a Rugby Ball
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Anisotropic Materials Behavior Modeling Under Shock Loading
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
From: Elastic Bounds of Bioinspired Nanocomposites
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
From: A Damage-Mechanics-Based Constitutive Model for Solder Joints
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
From: Elasticity Solutions to Nonbuckling Serpentine Ribbons
From: Curling of a Heated Annulus
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
From: Evolution Mechanisms of Thermal Shock Cracks in Ceramic Sheet
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
From: Wrinkling of a Polymeric Gel During Transient Swelling
Date of download: 1/7/2018 Copyright © ASME. All rights reserved.
Shijie He, Chenglin Liu, Xiaojun Li, Shaopeng Ma, Bo Huo, Baohua Ji 
Volume 99, Issue 8, Pages (October 2010)
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells
Presentation transcript:

From: Mechanics of Cell Mechanosensing on Patterned Substrate Date of download: 1/3/2018 Copyright © ASME. All rights reserved. From: Mechanics of Cell Mechanosensing on Patterned Substrate J. Appl. Mech. 2016;83(5):051014-051014-8. doi:10.1115/1.4032907 Figure Legend: The schematic illustration of cell traction measurement. (a) Upper: the cells adhering on the gel substrate; lower: the cells treated with trypsin for removing off from the gel. (b) Upper: the fluorescence image of gel surface with cells; lower: the fluorescence image of gel surface without cells for measuring the substrate deformation.

From: Mechanics of Cell Mechanosensing on Patterned Substrate Date of download: 1/3/2018 Copyright © ASME. All rights reserved. From: Mechanics of Cell Mechanosensing on Patterned Substrate J. Appl. Mech. 2016;83(5):051014-051014-8. doi:10.1115/1.4032907 Figure Legend: Free-body diagram of the element in cell layer. (a) The cell layer restrained by ringlike pattern substrate. (b) The top view of the free-body diagram of the element. (c) The side view of the free-body diagram of the element.

From: Mechanics of Cell Mechanosensing on Patterned Substrate Date of download: 1/3/2018 Copyright © ASME. All rights reserved. From: Mechanics of Cell Mechanosensing on Patterned Substrate J. Appl. Mech. 2016;83(5):051014-051014-8. doi:10.1115/1.4032907 Figure Legend: Cell alignment and polarization on the ring patterned substrate. (a) A quarter of phase contrast images of cell morphology on 60 kPa and 10 kPa PAA gel substrate with ring pattern (scale bar: 50 μm); (b) polar plot of cell angle distribution with respect to the circumferential angle; and (c) the mean cell angle as function of the distance to the ring center for two different stiffnesses. (d) The mean aspect ratio of cells versus the distance to the center of the ring pattern of different stiffnesses. #: 60 kPa versus 10 kPa, p < 0.05.

From: Mechanics of Cell Mechanosensing on Patterned Substrate Date of download: 1/3/2018 Copyright © ASME. All rights reserved. From: Mechanics of Cell Mechanosensing on Patterned Substrate J. Appl. Mech. 2016;83(5):051014-051014-8. doi:10.1115/1.4032907 Figure Legend: Actin distribution on the ringlike patterned substrate. (a) F-actin fluorescence image on 60 kPa gel; a zoom-in image illustrating how orientationj works. The yellow dotted ellipse shows the region of interest. The angle ϕ is defined as the angle between the major axis of the red ellipse and the horizontal direction, given by Eq. (A3) in the Appendix. And the angle θbetween the major axis of the red solid ellipse and the circumferential direction of the ring pattern can be calculated when ϕ is obtained. (b) F-actin fluorescence image on 10 kPa gel. (c) Actin orientation angle versus the radial position; (d) actin coherency versus the radial position. Scale bar: 50 μm. #:60 kPa versus 10 kPa, p < 0.05.

From: Mechanics of Cell Mechanosensing on Patterned Substrate Date of download: 1/3/2018 Copyright © ASME. All rights reserved. From: Mechanics of Cell Mechanosensing on Patterned Substrate J. Appl. Mech. 2016;83(5):051014-051014-8. doi:10.1115/1.4032907 Figure Legend: Nucleus alignment and polarization on the ringlike patterned substrate. (a) Nucleus fluorescence image on 60 kPa gel; (b) nucleus fluorescence image on 10 kPa gel. (c) Nucleus orientation angle versus the radial position; (d) nucleus aspect ratio versus the radial position. Scale bar: 50 μm.

From: Mechanics of Cell Mechanosensing on Patterned Substrate Date of download: 1/3/2018 Copyright © ASME. All rights reserved. From: Mechanics of Cell Mechanosensing on Patterned Substrate J. Appl. Mech. 2016;83(5):051014-051014-8. doi:10.1115/1.4032907 Figure Legend: In-plane stresses in the cell layer. (a) Color map of predictions of in-plane maximum shear stress; (b) vectorial representation of predictions of the in-plane maximum principal stress; (c) the predictions of the in-plane maximum shear stress for two different substrate stiffnesses; (d) and (g) color map of the measured in-plane maximum shear stress on the 30 kPa gel (d) and 10 kPa gel (g); (e) and (h) the vectorial representation of the measured maximum principal stress on the 30 kPa gel (e) and 10 kPa gel (h); and (f) and (i) the measured in-plane maximum shear stress as function of the distance to the ring center on the 30 kPa gel (f) and 10 kPa gel (i). Scale bar: 50 μm.