Gyrofluid Turbulence Modeling of the Linear

Slides:



Advertisements
Similar presentations
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Advertisements

Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
Short wavelength ion temperature gradient driven instability in toroidal plasmas Zhe Gao, a) H. Sanuki, b) K. Itoh b) and J. Q. Dong c) a) Department of.
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
Algorithm Development for the Full Two-Fluid Plasma System
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
Chapter 4 Waves in Plasmas 4.1 Representation of Waves 4.2 Group velocity 4.3 Plasma Oscillations 4.4 Electron Plasma Waves 4.5 Sound Waves 4.6 Ion Waves.
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
ITER reflectometry diagnostics operation limitations caused by strong back and small angle scattering E.Gusakov 1, S. Heuraux 2, A. Popov 1 1 Ioffe Institute,
Physics of fusion power Lecture 8: Conserved quantities / mirror / tokamak.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Intermittent Transport and Relaxation Oscillations of Nonlinear Reduced Models for Fusion Plasmas S. Hamaguchi, 1 K. Takeda, 2 A. Bierwage, 2 S. Tsurimaki,
Wave induced supersonic rotation in mirrors Abraham Fetterman and Nathaniel Fisch Princeton University.
Joaquim Loizu P. Ricci, F. Halpern, S. Jolliet, A. Mosetto
Shu Nishioka Faculty of Science and Technology, Keio Univ.
IPP - Garching Reflectometry Diagnostics and Rational Surface Localization with Fast Swept Systems José Vicente
Interplay between energetic-particle-driven GAMs and turbulence D. Zarzoso 15 th European Fusion Theory Conference, Oxford, September CEA, IRFM,
ETFP Krakow, Edge plasma turbulence theory: the role of magnetic topology Alexander KendlBruce D. Scott Institute for Theoretical PhysicsMax-Planck-Institut.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Recent advances in wave kinetics
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Internal Transport Barriers and Improved Confinement in Tokamaks (Three possible.
1 Non-neutral Plasma Shock HU Xiwei (胡希伟) 工 HU Xiwei (胡希伟) HE Yong (何勇) HE Yong (何勇) Hu Yemin (胡业民) Hu Yemin (胡业民) Huazhong University of Science and.
Comparison of Ion Thermal Transport From GLF23 and Weiland Models Under ITER Conditions A. H. Kritz 1 Christopher M. Wolfe 1 F. Halpern 1, G. Bateman 1,
Association EURATOM-CEA Electromagnetic Self-Organization and Turbulent Transport in Tokamaks G. Fuhr, S. Benkadda, P. Beyer France Japan Magnetic Fusion.
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Effects of Flow on Radial Electric Fields Shaojie Wang Department of Physics, Fudan University Institute of Plasma Physics, Chinese Academy of Sciences.
RFX-mod Program Workshop, Padova, January Current filaments in turbulent magnetized plasmas E. Martines.
Microscopic Eddys don’t imply gyroBohm Scaling Scan device size while keeping all other dimensionless parameters fixed Turbulence eddy size remains small.
Ocean Surface Current Observations in PWS Carter Ohlmann Institute for Computational Earth System Science, University of California, Santa Barbara, CA.
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
1 Magnetic components existing in geodesic acoustic modes Deng Zhou Institute of Plasma Physics, Chinese Academy of Sciences.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and  2 Now, we need procedures to calculate  and  2, themselves.
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
53rd Annual Meeting of the Division of Plasma Physics, November , 2010, Salt Lake City, Utah 5-pin Langmuir probe configured to measure the Reynolds.
Plasma Turbulence in the HSX Stellarator Experiment and Probes C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory,
Dominik Schega (1), S.S.Abdullaev (1), M.Clever (1), K.H.Finken (1), M.Jakubowski (2), Y.Kikuchi (3), M.Lehnen (1), O.Schmitz (1), G.Sewell (4), H.Stoschus.
54th Annual Meeting of the Division of Plasma Physics, October 29 – November 2, 2012, Providence, Rhode Island 5-pin Langmuir probe measures floating potential.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Measurements of Reynolds stress flow drive and radial electric fields in the edge of HSX Bob Wilcox HSX Plasma Laboratory University of Wisconsin, Madison.
Kinetic Effects on Slowly Rotating Magnetic Islands in Tokamaks
Mechanisms for losses during Edge Localised modes (ELMs)
An overview of turbulent transport in tokamaks
Turbulence wave number spectra reconstruction
CREC in the AC operation theory via simulation and experiment
Huishan Cai, Jintao Cao, Ding Li
Garching-Greifswald Ringberg Theory Meeting
Generation of Toroidal Rotation by Gas Puffing
Finite difference code for 3D edge modelling
Equilibrium Plasma Parameters Turbulent Wave Number Spectra
Influence of energetic ions on neoclassical tearing modes
Advances in Fusion Relevant Physics using the Large Plasma Device
Mikhail Z. Tokar and Mikhail Koltunov
Multiscale modeling of hydrogen isotope transport in porous graphite
2. Crosschecking computer codes for AWAKE
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
D. V. Rose, T. C. Genoni, and D. R. Welch Mission Research Corp.
Presentation transcript:

Gyrofluid Turbulence Modeling of the Linear Max-Planck-Institut für Plasmaphysik, EURATOM Association Gyrofluid Turbulence Modeling of the Linear Device VINETA G. N. Kervalishvili, R. Kleiber, R. Schneider, B. D. Scott, O. Grulke and T. Windisch

Max-Planck-Institut für Plasmaphysik, EURATOM Association Outline Motivation Linear VINETA Device Gyrofluid Code GEM3 Benchmarks Results Conclusions

Max-Planck-Institut für Plasmaphysik, EURATOM Association Motivation Study and understanding of turbulence under simplified conditions as a pre-requisite for understanding turbulence in tokamaks or stellarators Far scrape off layer (in fusion devices): blobs S. I. Krasheninnikov, Phys. Lett. A. (2001) Blobs also exist in devices with linear magnetic geometry G. Y. Antar et. al., PRL (2001), G. Y. Antar et. al., POP (2003) Radial movement of blobs in PISCES experiments was explained by the concept of ‘neutral wind’ S.I. Krasheninnikov at al., POP (2003) Net force: Net force to wall replaces curvature

Max-Planck-Institut für Plasmaphysik, EURATOM Association Motivation Study and understanding of turbulence under simplified conditions as a pre-requisite for understanding turbulence in tokamaks or stellarators Far scrape off layer (in fusion devices): blobs S. I. Krasheninnikov, Phys. Lett. A. (2001) Blobs also exist in devices with linear magnetic geometry G. Y. Antar et. al., PRL (2001), G. Y. Antar et. al., POP (2003) Interpretation of experiment: better diagnostics of VINETA No radial movement of blobs observed in VINETA experiments T. Windisch et al. Physica Scripta (2005)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Motivation Study and understanding of turbulence under simplified conditions as a pre-requisite for understanding turbulence in tokamaks or stellarators Far scrape off layer (in fusion devices): blobs S. I. Krasheninnikov, Phys. Lett. A. (2001) Blobs also exist in devices with linear magnetic geometry G. Y. Antar et. al., PRL (2001), G. Y. Antar et. al., POP (2003) Interpretation of experiment: better diagnostics of VINETA No radial movement of blobs observed in VINETA experiments T. Windisch et al. Physica Scripta (2005) Turbulence modeling of linear VINETA device, using the gyrofluid 3D code GEM3 B. D. Scott, PPCF (2003)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Linear VINETA Device Illustration of the VINETA device with its four modules (the total length is 4.5 m and the diameter 0.4 m). C. Frank, O. Grulke, T. Klinger, POP (2002)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Gyrofluid Code GEM3 Electromagnetic gyrofluid model Two-moment equations for each species: density, parallel velocity VINETA case: no curvature, electrostatic, cylindrical annulus Ion density and velocity moment equations Electron density and velocity moment equations

Max-Planck-Institut für Plasmaphysik, EURATOM Association Gyrofluid Code GEM3 Ions and electrons are connected by the polarization equation is gyroaveraged potential is approximated by Dimensionless coordinates

Max-Planck-Institut für Plasmaphysik, EURATOM Association Gyrofluid Code GEM3 Differential operators for cylindrical annulus advection operators are given in terms of Poisson brackets Parallel derivative is given by Perpendicular parts of Laplacian are given by

Max-Planck-Institut für Plasmaphysik, EURATOM Association Benchmarks Slab case: estimation of the time for one turn Cylinder case: diamagnetic estimate (time for one rotation) Growth rate for slab case Arakawa scheme for Poisson brackets (cylinder geometry) 2D Helmholtz solver (cylinder geometry) Resolution study (cylinder geometry) Computational dissipation study (cylinder geometry)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Benchmarks Time = 500 Time = 250 Time = 0 Slab case: estimation of the time for one turn Linearized 2D set of equations: Fourier ansatz: simplification for small Test case: , estimated time = 500 agrees with simulation result

Max-Planck-Institut für Plasmaphysik, EURATOM Association Benchmarks Time = 0 Time = 22 Time = 44 Cylinder case: estimation of the time for one rotation Linear density profile: Dimensionless variables: Test case: estimated time = 44 agrees with simulation result

Max-Planck-Institut für Plasmaphysik, EURATOM Association Benchmarks Estimation of growth rate in slab case Linearized set of equations Fourier ansatz: analytical dispersion relation

Max-Planck-Institut für Plasmaphysik, EURATOM Association Benchmarks Analytic result Code result Time scan of squared amplitude of growth rate growth rate

Max-Planck-Institut für Plasmaphysik, EURATOM Association Results Density profile from VINETA Simulation parameters Magnetic field Electron temperature Ion temperature Drift scale Sound speed Radial dependent collisionality

Results Time scan of squared amplitude of density Max-Planck-Institut für Plasmaphysik, EURATOM Association Results Time scan of squared amplitude of density Time scan of squared amplitude of potential Electron density

Max-Planck-Institut für Plasmaphysik, EURATOM Association Results Linear Potential Electron density Simulation: drift-wave instability m=6 Experiment: drift-wave instability m=1-8 (C. Schröder at al. )

Max-Planck-Institut für Plasmaphysik, EURATOM Association Results Turbulence Electron density Potential Simulation: no radial movement of blobs Experiment: no radial movement of blobs (T. Windisch at al. 2005)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Conclusions Adaption and checks of GEM3 for cylinder geometry First simulations for VINETA parameters No radial movement of blobs observed experimentally in VINETA (in contrast to previous results by PISCES) and in simulation Future plans: complete physics and diagnostics in order to compare quantitatively with experiment (also for different operational regimes) [C. Schröder at al. POP 2004])

Max-Planck-Institut für Plasmaphysik, EURATOM Association Results Linear Potential Electron density Simulation: drift-wave instability m=6 Experiment: drift-wave instability m=1-8 (C. Schröder at al. 2004)

Max-Planck-Institut für Plasmaphysik, EURATOM Association Benchmarks Non-linear case Time = 225 without dissipation With dissipation

Max-Planck-Institut für Plasmaphysik, EURATOM Association Results