741 Op-Amp Where we are going:
Source Degeneration Why do this? Higher Linearity Possible Stability GND Vout Vin Circuit Element Vout Vin Why not do this? gm Lower Bandwidth Higher Noise / Df GND
Source Degeneration I I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Neglect VA of Q1 and assume matched devices: Vout I Vin I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Vin V1 2 V1 = Vin + Vout / Av GND Q1 I = Ieo e(Vin + Vout/Av )/(2 UT) GND A similar result for MOSFETs
Common Emitter Ibias Ibias = Ico eVin/UT eVout /VA Vout Vin Common Emitter / Common Source Vdd Amplifies the input signal at the output Ibias 100mA Assuming an ideal current source: Vout Ibias = Ico eVin/UT eVout /VA Vin Vout = -VA ln(Ibias/Ico) + - (k VA / UT) Vin GND
Common Drain Ibias Ibias = Ibias ekDVin/UT eDVout/VA Vdd Amplifies the input signal at the output 100pA Ibias Ibias = Ibias ekDVin/UT eDVout/VA Vout Vin DVout = - (k VA / UT) DVin GND Input conductance = 0
Common Drain Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn We must account for the other current source: Vdd Vb Ibias Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn M6 Vout Vin M7 DVout = - (k (VAn // VAp) UT) DVin GND
Common-Drain: Amplifier Measurements Vdd V1 M6 Ibias Vout Mb M7 GND GND
Common Drain Ibias Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) ) What about above-threshold operation: Vdd Operating region decreases (Vout > Vin - VT) Derive using quadratic functions: 100mA Ibias Vout Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) ) Vin GND Vout = VA( - 1) Amplifies the input signal at the output
Common E / S: Resistive Load
High-Gain Amplifier Experiments Load-line Analysis
Common Base Ibias Ibias = Ico e (Vb -Vin )/UT eVout /VA Common Base / Common Gate Vdd Amplifies the input signal at the output (non-inverting gain) Ibias 100mA Assuming an ideal current source: Vout Ibias = Ico e (Vb -Vin )/UT eVout /VA Vb Vout = -VA ln(Ibias/Ico) + (VA / UT) Vin - (VA / UT) Vb Vin Gain = VA / UT = Av
Common Gate Ibias = Io e (kVb -Vin )/UT eVout /VA Ibias Vdd Using a subthreshold MOSFET : 100pA Ibias = Io e (kVb -Vin )/UT eVout /VA Ibias Vout = -VA ln(Ibias/Io) + (VA / UT) Vin - (k VA / UT) Vb Vout Vb Gain = VA / UT = Av Vin Problem: Large input current
Common G: Resistive Load
Cascode Circuits Use a common-gate/base transistor to: 1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor. Vdrain Vin GND V1 Vgate Input resistance of common-gate is low Source is nearly fixed if connected to the drain of a transistor
Cascode Circuits Vdrain Vdrain Vbias Vgate GND V1 Vgate GND Idrain = Io e kVgate/UT e kVbias /VA eVdrain / (Av VA ) Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output
Cascode Common-Drain Amp Vdd One Pole V1 High Output Resistance / DC Gain biasp Vout Ibias biasn Vb Mb GND GND
BJT Cascode Configuration
MOS Cascode Circuit
BJT - CMOS Cascode Circuits Preserve High-gm/I
Cascade Configurations
Cascade Connection: Rout
BJT-MOS Cascades A good way to get zero base current….
Cascades: More stuff