741 Op-Amp Where we are going:.

Slides:



Advertisements
Similar presentations
Common-Gate (Base) Amplifier and Cascode Circuits
Advertisements

Physical structure of a n-channel device:
CHAPTER 3: SPECIAL PURPOSE OP-AMP CIRCUITS
Differential Amplifiers
Common-Base vs. Common-Emitter
Differential and Multistage Amplifiers
Microelectronic circuits by Meiling CHEN 1 Lecture 13 MOSFET Differential Amplifiers.
Chapter #8: Differential and Multistage Amplifiers
HW due Friday (10/18) 6.39,6.61,6.71,6.80 October 15, 2002.
JFET and MOSFET Amplifiers
ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 16. Active Loads Jose E. Schutt-Aine Electrical & Computer Engineering University of.
11. 9/14 Music for your ears 9/14 Musique 101 9/14 Audio Spectrum 4.
Chapter 15 Differential Amplifiers and Operational Amplifier Design
Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith ( ) 8.2. Small-Signal Operation of the MOS Differential.
741 Op-Amp Where we are going:. Typical CMOS Amplifier.
Chapter 13 Small-Signal Modeling and Linear Amplification
UNIT -V IC MOSFET Amplifiers.
Transistor.
Common Base and Common Collector Amplifiers
Field Effect Transistors: Operation, Circuit Models, and Applications
ECE 1270: Introduction to Electric Circuits
Review for Final Exam MOSFET and BJT Basis of amplifiers
ECE 3302 Fundamentals of Electrical Engineering
Power amplifier circuits – Class AB
Recall Lecture 17 MOSFET DC Analysis
Introduction Equivalent circuit model of op-amp
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Bipolar Junction Transistor
ENEE 303 4th Discussion.
HW#10 will be posted tonight
COMMON-GATE AMPLIFIER
Lecture 13 High-Gain Differential Amplifier Design
Principles & Applications Small-Signal Amplifiers
Analog Electronic Circuits 1
CASCODE AMPLIFIER.
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
HKN ECE 342 Review Session 2 Anthony Li Milan Shah.
Lecture 10 ANNOUNCEMENTS OUTLINE BJT Amplifiers (cont’d)
Common-Base Amplifier
ترانزیستور MOSFET دکتر سعید شیری فصل چهارم از:
ECE 333 Linear Electronics
A Floating-Gate Technology for Digital CMOS Processes
MULTISTAGE AMPLIFIERS
741 Op-Amp Where we are going:.
Basic BJT Small-Signal Model
HW#10 will be posted tonight
Notes on Diodes 1. Diode saturation current:  
Lecture 42: Review of active MOSFET circuits
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
NMOS Inverter UNIT II : BASIC ELECTRICAL PROPERTIES Sreenivasa Rao CH
Principles & Applications Small-Signal Amplifiers
ENEE 303 6th Discussion.
Lecture 13 High-Gain Differential Amplifier Design
Last time Reviewed 4 devices in CMOS Transistors: main device
Power amplifier circuits – Class AB
MOSFET – Common-Source Amplifier
A MOSFET Opamp with an N-MOS Dfferential Pair
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Single-Stage Amplifiers
Operational Amplifier (Op-Amp)-μA741
Types of Amplifiers Common source, input pairs, are transconductance
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture #17 (cont’d from #16)
Current Sources Ever wonder how we make one of these?
Electronic PRINCIPLES
Lecture 11 ANNOUNCEMENTS OUTLINE Review of BJT Amplifiers
Anthony Li Alec Wasowicz
Analysis of Single Stage Amplifiers
Presentation transcript:

741 Op-Amp Where we are going:

Source Degeneration Why do this? Higher Linearity Possible Stability GND Vout Vin Circuit Element Vout Vin Why not do this? gm Lower Bandwidth Higher Noise / Df GND

Source Degeneration I I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Neglect VA of Q1 and assume matched devices: Vout I Vin I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Vin V1 2 V1 = Vin + Vout / Av GND Q1 I = Ieo e(Vin + Vout/Av )/(2 UT) GND A similar result for MOSFETs

Common Emitter Ibias Ibias = Ico eVin/UT eVout /VA Vout Vin Common Emitter / Common Source Vdd Amplifies the input signal at the output Ibias 100mA Assuming an ideal current source: Vout Ibias = Ico eVin/UT eVout /VA Vin Vout = -VA ln(Ibias/Ico) + - (k VA / UT) Vin GND

Common Drain Ibias Ibias = Ibias ekDVin/UT eDVout/VA Vdd Amplifies the input signal at the output 100pA Ibias Ibias = Ibias ekDVin/UT eDVout/VA Vout Vin DVout = - (k VA / UT) DVin GND Input conductance = 0

Common Drain Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn We must account for the other current source: Vdd Vb Ibias Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn M6 Vout Vin M7 DVout = - (k (VAn // VAp) UT) DVin GND

Common-Drain: Amplifier Measurements Vdd V1 M6 Ibias Vout Mb M7 GND GND

Common Drain Ibias Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) ) What about above-threshold operation: Vdd Operating region decreases (Vout > Vin - VT) Derive using quadratic functions: 100mA Ibias Vout Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) ) Vin GND Vout = VA( - 1) Amplifies the input signal at the output

Common E / S: Resistive Load

High-Gain Amplifier Experiments Load-line Analysis

Common Base Ibias Ibias = Ico e (Vb -Vin )/UT eVout /VA Common Base / Common Gate Vdd Amplifies the input signal at the output (non-inverting gain) Ibias 100mA Assuming an ideal current source: Vout Ibias = Ico e (Vb -Vin )/UT eVout /VA Vb Vout = -VA ln(Ibias/Ico) + (VA / UT) Vin - (VA / UT) Vb Vin Gain = VA / UT = Av

Common Gate Ibias = Io e (kVb -Vin )/UT eVout /VA Ibias Vdd Using a subthreshold MOSFET : 100pA Ibias = Io e (kVb -Vin )/UT eVout /VA Ibias Vout = -VA ln(Ibias/Io) + (VA / UT) Vin - (k VA / UT) Vb Vout Vb Gain = VA / UT = Av Vin Problem: Large input current

Common G: Resistive Load

Cascode Circuits Use a common-gate/base transistor to: 1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor. Vdrain Vin GND V1 Vgate Input resistance of common-gate is low Source is nearly fixed if connected to the drain of a transistor

Cascode Circuits Vdrain Vdrain Vbias Vgate GND V1 Vgate GND Idrain = Io e kVgate/UT e kVbias /VA eVdrain / (Av VA ) Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output

Cascode Common-Drain Amp Vdd One Pole V1 High Output Resistance / DC Gain biasp Vout Ibias biasn Vb Mb GND GND

BJT Cascode Configuration

MOS Cascode Circuit

BJT - CMOS Cascode Circuits Preserve High-gm/I

Cascade Configurations

Cascade Connection: Rout

BJT-MOS Cascades A good way to get zero base current….

Cascades: More stuff