ECAL OD Electronic Workshop 7-8/04/2005

Slides:



Advertisements
Similar presentations
José C. Da Silva OFF DETECTOR WORSHOP, April 7, 2005, Lisboa SLB and DCC commissioning for 904.
Advertisements

On the development of the final optical multiplexer board prototype for the TileCal experiment V. González Dep. of Electronic Engineering University of.
TileCal Optical Multiplexer Board 9U VME Prototype Cristobal Cuenca Almenar IFIC (Universitat de Valencia-CSIC)
Uli Schäfer JEM Status and Test Results Hardware status JEM0 Hardware status JEM1 RAL test results.
Selection Board PRR G. Avoni, I. Lax, U. Marconi INFN Bologna PRR, 13/6/06.
Status of the Optical Multiplexer Board 9U Prototype This poster presents the architecture and the status of the Optical Multiplexer Board (OMB) 9U for.
Uli Schäfer 1 JEM1: Status and plans power Jet Sum R S T U VME CC RM ACE CAN Flash TTC JEM1.0 status JEM1.1 Plans.
Fabrication & Assembly of Opto-Rx12 Modules for CMS- Preshower S. K. Lalwani Electronics Division Bhabha Atomic Research Centre Mumbai –
Global Trigger H. Bergauer, K. Kastner, S. Kostner, A. Nentchev, B. Neuherz, N. Neumeister, M. Padrta, P. Porth, H. Rohringer, H. Sakulin, J. Strauss,
Status and planning of the CMX Philippe Laurens for the MSU group Level-1 Calorimeter Trigger General Meeting, CERN May 24, 2012.
TID and TS J. William Gu Data Acquisition 1.Trigger distribution scheme 2.TID development 3.TID in test setup 4.TS development.
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
Tuesday September Cambridge1 GDCC “next replacement of the LDA” Franck GASTALDI.
ODE Workshop, LIP, 07-08/04/05 SRP: Software Irakli MANDJAVIDZE DAPNIA, CEA Saclay, Gif-sur-Yvette, France.
Atlas L1Calo CMX Card CMX is upgrade of CMM with higher capacity 1)Inputs from JEM or CPM modules – 40 → 160Mbps (400 signals) 2)Crate CMX to System CMX.
June 29th 2005Ph. BUSSON LLR Ecole polytechnique, Palaiseau1 Plans for a new TCC for the endcaps Characteristics: reminder Preliminary list of tasks and.
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Gueorgui ANTCHEVPrague 3-7 September The TOTEM Front End Driver, its Components and Applications in the TOTEM Experiment G. Antchev a, b, P. Aspell.
Global Trigger H. Bergauer, Ch. Deldicque, J. Erö, K. Kastner, S. Kostner, A. Nentchev, B. Neuherz, N. Neumeister, M. Padrta, P. Porth, H. Rohringer, H.
Hardware proposal for the L2  trigger system detailed description of the architecture mechanical considerations components consideration electro-magnetic.
CMX status and plans Yuri Ermoline for the MSU group Level-1 Calorimeter Trigger Joint Meeting CERN, October 2012,
Status and planning of the CMX Wojtek Fedorko for the MSU group TDAQ Week, CERN April , 2012.
ATLAS Trigger / current L1Calo Uli Schäfer 1 Jet/Energy module calo µ CTP L1.
Samuel Silverstein Stockholm University CMM++ firmware development Backplane formats (update) CMM++ firmware.
Monday December DESY1 GDCC news Franck GASTALDI.
Connector Differential Receiver 8 Channels 65 MHz 12 bits ADC FPGA Receive/buffer ADC data Format triggered Events Generate L1 Primitives Receive timing.
09/10/2010 RD51 Collaboration Meeting Cisbani-Musico-Minutoli / Status JLab Electronics 1 Status of the APV25 electronics for the GEM tracker at JLab Evaristo.
Feb 2002 HTR Status CMS HCal meeting at FIT Feb. 7-9, 2002 Tullio Grassi University of Maryland.
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
1 Timing of the calorimeter monitoring signals 1.Introduction 2.LED trigger signal timing * propagation delay of the broadcast calibration command * calibration.
X SuperB Workshop - SLAC Oct 06 to Oct 09, 2009 A.Cotta Ramusino, INFN Ferrara 1 SuperB IFR: outline of the IFR prototype electronics A.C.R
E. Hazen - DTC1 DAQ / Trigger Card for HCAL SLHC Readout E. Hazen - Boston University.
PC-based L0TP Status Report “on behalf of the Ferrara L0TP Group” Ilaria Neri University of Ferrara and INFN - Italy Ferrara, September 02, 2014.
Firmware and Software for the PPM DU S. Anvar, H. Le Provost, Y.Moudden, F. Louis, E.Zonca – CEA Saclay IRFU – Amsterdam/NIKHEF, 2011 March 30.
ODE Workshop, LIP, 08/04/05 SRP: Current Status Irakli MANDJAVIDZE DAPNIA, CEA Saclay, Gif-sur-Yvette, France.
E. Hazen1 MicroTCA for HCAL and CMS Review / Status E. Hazen - Boston University for the CMS Collaboration.
10/28/09E. Hazen FNAL Workshop1 HCAL DAQ / Timing / Controls Module Eric Hazen, Shouxiang Wu Boston University.
E. Hazen1 Fermilab CMS Upgrade Workshop November 19-20, 2008 A summary of off-detector calorimeter TriDAS electronics issues Eric Hazen, Boston.
HO / RPC Trigger Links Optical SLB Review E. Hazen, J. Rohlf, S.X. Wu Boston University.
E. Hazen - CMS Electronics Week
DAQ / Trigger Card for HCAL SLHC Readout E. Hazen - Boston University
DAQ and TTC Integration For MicroTCA in CMS
HCAL DAQ Path Upgrades Current DCC Status New DCC Hardware Software
Status of NA62 straw readout
AMC13 T1 Rev 2 Preliminary Design Review E. Hazen Boston University
E. Hazen - Back-End Report
R. Alemany (LIP) Session 2: Database
Production Firmware - status Components TOTFED - status
CCS Hardware Test and Commissioning Plan
A New Clock Distribution/Topology Processor Module for KOTO (CDT)
LATOME LAPP Nicolas Dumont Dayot on behalf of the LAPP team
HCAL Data Concentrator Production Status
MicroTCA Common Platform For CMS Working Group
TCC-48 project status report
Status of the oSLB project
CMS SLHC Calorimeter Trigger Upgrade,
Calorimeter Trigger Synchronization in CMS,
Irakli MANDJAVIDZE DAPNIA, CEA Saclay, Gif-sur-Yvette, France
TTC system and test synchronization
8-layer PC Board, 2 Ball-Grid Array FPGA’s, 718 Components/Board
USCMS HCAL FERU: Front End Readout Unit
CMX Status and News - post PRR -
Overview of the new CMS ECAL electronics
Data Concentrator Card and Test System for the CMS ECAL Readout
FED Design and EMU-to-DAQ Test
HCAL DAQ Interface Eric Hazen Jim Rohlf Shouxiang Wu Boston University
CSC Muon Sorter Status Tests Plans M.Matveev August 21, 2003.
LIP and the CMS Trigger Upgrade On behalf of the LIP CMS Group
TTC setup at MSU 6U VME-64 TTC Crate: TTC clock signal is
Presentation transcript:

ECAL OD Electronic Workshop 7-8/04/2005 TCC hardware test & commissioning plan M. Bercher, Y. Geerebaert, A. Karar, A. Mathieu, L. Zlatevski P. Busson, P. Paganini

TCC hardware test & commissioning plan TCC68 environment What is a TCC68 ? TCC68 Tests B.904 integration Conclusion

Trigger primitives @800 Mbits/s TCC68 environment OD TTC TCS Trigger Tower 25 Xtals (TT) Level 1 Trigger (L1A) L1 @100 kHz CCS (CERN) Regional CaloTRIGGER SLB (LIP) TCC (LLR) Global TRIGGER Trigger Tower Flags (TTF) Trigger primitives @800 Mbits/s SRP (CEA DAPNIA) Trigger Concentrator Card Synchronisation & Link Board Clock & Control System Selective Readout Processor Data Concentrator Card Timing, Trigger & Control Trigger Control System Selective Readout Flags (SRF) @100KHz (Xtal Datas) Data path DCC (LIP) DAQ From : R. Alemany LIP

What is a TCC68 P1 P0 P2 VME 9U Board 68(72) optical inputs @ 800 Mb/s => 1 supermodule (68 TT) 9 daughter boards SLB 6 optical receivers 12 channels 72 low-latency deserializers 6 FPGA (957 pins) 1 FPGA with integrated SerDes 1 TTCrx (Asic from CERN) Dedicated chip for Clock fanout 1 FPGA (VME64x «plug & play») PCB Design challenges : High interconnect density, high power consumption (~130W) Clean clock fanout (1:80) Aglient HDMP 1034A // Datas OD Connector XILINX FPGA Virtex2 pro Transciver E/O ALTERA FPGA for VME P0 Clock Fanout 1:90 P2 FromCCS TTCrx Chip To DCC To SRP

TCC68 (Trigger Concentrator Card 68 channels) Drawing report of TCC68 : PCB dim. 366 x 400 mm Thickness : 2,2 mm 10 layers Class 6 with µ-vias laser Controlled impedance vias 2734 components ~14000 connections ~14000 vias Etch length ~625 m

TCC68 (Trigger Concentrator Card 68 channels) Drawing report of TCC68 : PCB dim. 366 x 400 mm Thickness : 2,2 mm 10 layers Class 6 with µ-vias laser Controlled impedance vias 2734 components ~14000 connections ~14000 vias Etch length ~625 m

TCC68 prototype tests Tests carried out : Measure of power consumption VME interface Clock distribution Configuration at power on with new Flash from Xilinx (xcf32p). Reception of data via NGK receiver and Agilent deserialyzer Data bus from Xilinx to SLB via adaptation board (SLB_TLA) RocketIO, SFP link (under test) Tests remaining: RocketIO, SFP link OD interface TTCrx chip

Step 0:Check OD interface 9U VME64x CRATE L1A, CLK L1A, CLK 9U VME64x CRATE T C Ex/ VI C A E N C A E N D C C S T C L1A, CLK in the 6U slots TP: Trigger Primitives SRF: Selective Readout Flags TP SRF Crate Controller DAQkit V3 TTCvi/ex: generates clock and L1A S-Link64 pclip5 Need: 1 VME 9U Crate + controller with expected modification for power supply via Paux (=final OD crate) + OD back plane board 1 VME 9U crate + controller 1 DCC, 1 CCS, 1 TCC, 1 TTCvi+ex 1 (2?) PC TCC: at reception of L1A, it transmits patterns to DCC Patterns are previously loaded in TCC memories. DCC: Received patterns are checked using the PC

Step 0’:Check trigger interface 9U VME64x CRATE L1A, CLK L1A, CLK 9U VME64x CRATE T C Ex/ VI C A E N C A E N D C C S T C L1A, CLK in the 6U slots TP: Trigger Primitives SRPF: Selective Readout Flags TP Crate Controller DAQkit V3 S-Link64 STC/GCT pclip5 TTCvi/ex: generates clock and L1A Need: Step 0 + 1 STC/GCT + 9 SLBs TCC: At 40 MHz, it transmits patterns to STC via SLB Patterns are previously loaded in TCC memories. In this mode, nothing is transmitted to DCC (DCC not needed) STC/GCT: How does it check received patterns?

Step 1 : Check DCC datas @ L1A L1A, CLK L1A, CLK 9U VME64x CRATE 9U VME64x CRATE T C Ex/ VI D C - T C A E N C A E N D C C S T C L1A, CLK in the 6U slots DCC-T: DCC Tester TP: Trigger Primitives SRF: Selective Readout Flags TP SRF Crate Controller DAQkit V3 S-Link64 DCC-Tester: Generates clock and L1A signals for DCC pclip5 Need: Step 0 + 1 DCC-Tester + optical fibers TCC: At reception of L1A, it transmits patterns to DCC Patterns are previously loaded in TCC memories and must be consistent with what is sent by the DCC-Tester

Step 2 : Check DCC/TCC @ L1A L1A, CLK 9U VME64x CRATE 9U VME64x CRATE L1A, CLK T C Ex/ VI D C - T T C - C A E N C A E N D C C S T C L1A, CLK in the 6U slots DCC-T: DCC Tester TP: Trigger Primitives SRF: Selective Readout Flags TP TP SRF Crate Controller DAQkit V3 S-Link64 STC/GCT DCC-Tester: must have an input from TTCex Patterns loaded in DCC-Tester memories must be consistent with patterns loaded in TCC-Tester pclip5 TCC: Normal readout mode TCC-Tester: At 40 MHz, it transmits patterns to TCC Patterns are previously loaded in TCC-Tester memories. TCC-Tester generates the L1A and CLK, that are transmitted to TTCvi/ex and propagated to all the other boards Need: Step 1 + 1 TCC-Tester + optical fibers

Step 3 : Check SRP interface L1A, CLK 9U VME64x CRATE 9U VME64x CRATE L1A, CLK T C Ex/ VI D C - T T C - C A E N C A E N D C C S T C L1A, CLK in the 6U slots DCC-T: DCC Tester TP: Trigger Primitives SRF: Selective Readout Flags TP TP Crate Controller DAQkit V3 S-Link64 STC/GCT pclip5 SRF 6U VME CRATE Need: Step 2 + 1 AB board + optical fiber 1 SRP VME crate+ controller ? A B

B.904 integration Resources required in B.904 for TCC68 : 1 VME64x crate compatible with TCC68 power supply 1 OD Back plane 1 SBS crate controller (or CAEN ???) Cables with connectors such as BNC, SMA, etc… Optical fibers, optical couplers, etc… 1 “electronic” toolbox : Logic analyzer (Tektronix for probe compatibility with TCC68) Oscilloscope (freq. Min. 100 MHz, 2 or 4 channels, optical input ?) Clock generator (up to 50 MHz at least, 50 ohms, 2 outputs) + soldering iron, screw drivers, etc… 1 notebook and 1 PC4 (xilinx) to download firmware in TCC68 FPGAs A network connection, a printer, a coffee machine ?

TCC68 interfaces TCC68_V0 DCC CCS OD backplane LVDS@720Mb/s

TCC68 interfaces TCC68_V1 DCC CCS OD backplane LVDS@720Mb/s

TCC68 interfaces TCC68_V1 OD backplane DCC LVDS@720Mb/s

State of TCC : Conclusion Global architecture of TCC68 PCB seems to be OK We need lot of materials for B.904 We’d like to do some tests at CERN with SLB(s) on TCC68 before B.904 integration test. Which communication protocol for link with CCS ?