A BeamLine update m. apollonio 7/7/2010 CM27 - RAL 1.

Slides:



Advertisements
Similar presentations
1April, UKNF09 - Lancaster1 MICE Beamline m. apollonio.
Advertisements

1 MICE Beamline: Plans for initial commissioning. Kevin Tilley, 16 th November. - 75days until commissioning Target, detectors, particle production Upstream.
MICE Beam Loss vs Particle Rate Adam Dobbs, ISIS Meeting, 18 th December 2009.
MICE Beam-line and Detectors Status Report 16 th October 2009 Chris Booth The University of Sheffield.
MICE Particle Rate and ISIS Beam Loss Adam Dobbs, Target – ISIS Meeting, 17 th September 2010.
D. Huang, MICE video conference1 Proton and Pion productions: preliminary simulation & measurements Dazhang Huang.
Paul drumm, mutac jan MICE Beamline Optics Design Kevin Tilley, RAL, 12th June MICE Needs Generic Solution Pion Injection & Decay Section (a) Inputs.
Emittance–momentum matrix1 Demonstrating the emittance-momentum matrix Mark Rayner, MICE Video Conference, 21 January Initial 4D.
SLIDE Beam measurements using the MICE TOF counters Analysis meeting, 23 September 2008 Mark Rayner.
Linda R. Coney – 24th April 2009 MOM Update Linda R. Coney 21 September, 2009.
Slide 1 MICE Beamline Design and Commissioning Review 16 th Nov 2007 Simulation comparison / tools / issues Henry Nebrensky Brunel University There are.
1 September 09Mark Rayner – Emittance measurement by The TOFs1 Emittance measurement by the TOFs Via trace space reconstruction of individual muons. Complementary.
Linda R. Coney – 24th September 2009 MOM Update End of Sept Run Linda R. Coney 05 October, 2009.
1 PID Detectors & Emittance Resolution Chris Rogers Rutherford Appleton Laboratory MICE CM17.
M. apollonioNuFact10 - Mumbai1 B0 B1 B2 B3 B4 B5 B6 V. Palladino TOF1.doc / MICE page / Manuals SOUTH WALL X-FLIP in TOF1 (TOF0) (TOF2 also?) We convinced.
M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.
Beam line summary paul drumm for beam line group.
124/3/2010CM26 - Riverside1 m. apollonio ( ,P) matrix.
M.apollonioMICE Funding Agency Committee Meeting - RAL 18/4/ M. Apollonio – MICE Operations Manager University of Oxford MICE beam line commissioning.
K.Walaron Fermilab, Batavia, Chicago 12/6/ Simulation and performance of beamline K.Walaron T.J. Roberts.
Chris Rogers, MICE CM16 Wednesday Plenary Progress in Cooling Channel Simulation.
Beam line characterization with the TOFs1 Demonstrating the emittance-momentum matrix Mark Rayner, CM26 California, 24 March Initial.
Linda R. Coney – 24th April 2009 MOM Update Linda R. Coney 14 September, 2009.
Beamline-to-MICE Matching Ulisse Bravar University of Oxford 2 August 2004 MICE performance with ideal Gaussian beam JUNE04 beam from ISIS beamline (Kevin.
Luminosity Monitors MICE Video Conference 7 May 2009 Paul Soler.
TJR 7/30/031 Geant4 Simulations of the MICE Beamline Tom Roberts Illinois Institute of Technology 7/30/03.
1June 1 st 2009MICE CM24 - RAL1 MICE Beamline m. apollonio.
Mark Rayner, Analysis workshop 4 September ‘08: Use of TOFs for Beam measurement & RF phasing, slide 1 Use of TOFs for Beam measurement & RF phasing Analysis.
The MICE beam line status a)Muon BL: P=208 MeV/c, emi_N= 7 mm rad “... the mother of all the beamlines “ b)Proton BL: derived from (a) by rescaling magnet.
Chris Rogers, Analysis Parallel, MICE CM17 Progress in Cooling Channel Simulation.
1 MICE Beamline Design: General principles & expected capabilities Kevin Tilley, 16 th November Charge to beamline & desirable beam General principles.
M.apollonio/j.cobbMICE UK meeting- RAL - (9/1/2007) 1 Single Particle Amplitude M. Apollonio – University of Oxford.
Diffuser Studies Chris Rogers, IC/RAL MICE VC 09 March 2005.
The MICE beam line status a)Muon BL: P=208 MeV/c, emi_N= 7 mm rad “... the mother of all the beamlines “ b)Proton BL: derived from (a) by rescaling magnet.
MICE Video meeting Alain Blondel 7 December MICE -- what running strategy? reflections on steps I and II.
MICE VC Aug '10J.S. GraulichSlide 1 MOM report o Achievements Since CM27 o Daily Operations o Run Plans o Summary Jean-Sebastien Graulich, Geneva.
(+) session, PAC09 Vancouver – TH6PFP056 Introduction The Muon Ionisation Cooling Experiment (MICE, fig. 1c) at RAL[1]
Goals and Status of MICE The International Muon Ionization Cooling Experiment J.S. Graulich.
MICE Beamline Commissioning Linda R. Coney NFMCC Meeting 16 January 2010.
Results from Step I of MICE D Adey 2013 International Workshop on Neutrino Factories, Super-beams and Beta- beams Working Group 3 – Accelerator Topics.
MICE Beam-line and Detectors Status Report 16 th October 2009 Chris Booth The University of Sheffield.
MICE Step 1: First Emittance Results with Particle Physics Detectors Linda R. Coney EuCARD Meeting – 10 May 2011.
M. apollonio MICE Beamline summary. - Beamline parallel session (June 1 st ): - envisaged goals (Alain) - assess readiness of the line magnet status (Ken)
MICE input beam weighting Dr Chris Rogers Analysis PC 05/09/2007.
Particle Production in the MICE Beamline IPAC10 Linda Coney, UC Riverside, Adam Dobbs, Imperial College London, Yordan Karadzhov, Sofia University The.
Linda R. Coney – 24th September 2009 MOM Update Linda R. Coney 24 September, 2009.
Mark Rayner 14/8/08Analysis Meeting: Emittance measurement using the TOFs 1 Emittance measurement using the TOFs The question: can we use position measurements.
Marco apollonio/J.CobbMICE coll. meeting 16- RAL - (10/10/2006) 1 Transmittance, scraping and maximum radii for MICE STEPVI M. Apollonio – University of.
MICE Run Plan Sept/Oct 2009 m. apollonio – IC MACHINE PHYSICS USERs RUN NO SHIFT A B C D E.
1M. Ellis - NFMCC - 31st January 2007 MICE Analysis.
3 June 2009J. H. Cobb 1 ANALYSIS SUMMARY CM24 Agenda for Analysis parallel session at CM Sunday 31 May 14:00.
26 Oct 2010PC Physics Requirements of Software from Chris R ~19 Oct. My.
M. Bonesini - CM 22 RAL October 081 TOF0 status M. Bonesini Sezione INFN Milano Bicocca.
14/01/2008MICE CM23 - Beam Line Parallel Session1 Simulations: tools and status Marco Apollonio, Imperial College - London.
1June 2 nd 2009MICE CM24 - RAL1 m. apollonio Beamline+( ,P) matrix.
1 Updated Run Plans. K.Tilley, MICO, 07/02/08 - pre-commissioning - Target, - beamline functionality - detectors, particle production - decay solenoid.
Mark Rayner – Analysis SessionCM25, 4 November Beam characterization by the TOFs Mark Rayner The University of Oxford MICE CM25.
M. apollonio 7/7/2010CM27 - RAL11 Beam-Line Analysis …
Paul drumm, mutac jan Status of Muon Beamline design work Kevin Tilley, RAL, 9th Feb Including Beamline Materials in new revision Reference ('True')
1June 1 st 2009MICE CM24 - RAL1 Beamline Optics m. apollonio.
1 1 Optics related work: the major threads: -Current (ε,p) status - G4BL/TTL Simulation comparisons - Beam steering/correction -Collimation d/stream &
M.apollonioNuFact??1 ABSTRACT In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are pro­duced and transported in a dedicated beam line connecting.
Marco apollonioAnalysis Meeting (9/12/2006)1 transmission vs amplitude with a finite size diffuser M. Apollonio – University of Oxford.
MICE Step IV Lattice Design Based on Genetic Algorithm Optimizations
Beam-Line Analysis m. apollonio 7/7/2010 CM27 - RAL 1.
MICE Beamline Status m. apollonio 17 December 2009 MICE VC
TOF Software and Analysis Tools
MICE: First Beam Emittance Results w/Particle Detectors
MOM Report + RUN PLAN m. apollonio – Imperial College
K. Tilley, ISIS, Rutherford Appleton Laboratory, UK Introduction
Presentation transcript:

a BeamLine update m. apollonio 7/7/2010 CM27 - RAL 1

Characterizing the BL  MATRIX Intensive Program (started in mid-June with CR as MoM) Choose Range of Momenta  initial optics: M0 scan of the DS triplets (and single Q4,..Q9) for some relevant optics define variation of Twiss Parameters as a function of optics MC simulation DATA Analysis Comparison Optimize M0  Mopt: awesome or awful? 7/7/2010 CM27 - RAL 2

In June we finally had DKsolenoid back to normal … … and Q3 power supply decided to stop working - We used a Doublet Configuration (Q1-Q2) until a spare Q3-psu found For these studies the main detectors used are TOF0 / TOF1 and GVA1 Beam Rate Studies (per species) vs Tgt depth, please refer to A. Dobbs’ talk Ditto for status of Detectors TOFs can be used to measure the Phase Space at TOF1 [see M. Rayner’s talk] it can be extrapolated to Diffuser For this to be possible we urged the BL to be stable: no extra changes in DAQ no extra calibrations Last chance to have a long period of Data Taking before the long shut-down 7/7/2010 CM27 - RAL

Phase Space determination with TofTrace (@ TOF1 US, run 2037) 7/7/2010 CM27 - RAL

An example of TOF0-1 selection of muons with the TofTree algorithm … and momentum measurement (run 2037). P should be <238 MeV/c [PD2 as expected] We discovered a discrepancy Between real TOF1-TOF0 Distance and model 7/7/2010 CM27 - RAL

Compendium of DS-BL key locations positions refer to the centre of Q4 [TOF0 median plane recalculated=-25.4-5 mm / TOF1 median plane recalculated =-5mm] G4BL deck 0 1160 2320 3378.95 9952.1 11207.5 11813.2 Dz = 7828.55 17838.58 Q4 Q5 Q6 TOF0(C) Q7 Q8 Q9 TOF1(C) DIFF(US) 6010 (*) Dz = 7764.09 6017.5 (*) 0 1160 2320 3378.6 9952.1 11142.69 11821.09 SURVEY + addendum Jan 2010 (should be the latest take) + Maurizio’s tips on aluminium frame thickness [5mm] (*) Relative distances from NOTE 176 wrt to MICE CENTRE. DS face is fixed to 6010, US face assumes thickness=7.5 mm

TOF and MOMENTA TOF-baseline mu pi 7700 222.9576059 225.2661936 7710 224.5517929 226.3438882 7720 226.174278 227.4329231 7730 227.8259468 228.5335137 7738.7 229.28 229.5005995 7740 229.5077244 229.6458812 7750 231.2205776 230.7702528 7760 232.9655173 231.9068619 7770 234.7436014 233.0559482 7780 236.5559374 234.2177584 7790 238.4036857 235.3925457 7800 240.2880624 236.5805709 7810 242.2103434 237.7821017 7820 244.1718677 238.9974139 7830 246.1740419 240.2267912 7840 248.2183446 241.4705254 7850 250.3063307 242.7289171 7860 252.4396374 244.0022757 7870 254.6199892 245.2909198 7880 256.8492043 246.5951779 7890 259.1292011 247.9153883 7900 261.4620057 249.2518996 7910 263.8497594 250.6050715 7920 266.2947277 251.9752747 7930 268.7993094 253.3628917 7940 271.3660471 254.7683173 7950 273.9976383 256.1919589 7960 276.6969479 257.634237 7966.1 278.37 258.5233631 7970 279.4670219 259.0955861 7980 282.3111022 260.576455 7990 285.2326429 262.0773074 8000 288.2353294 263.5986229 8010 291.3230978 265.1408971 8020 294.5001577 266.7046429 8030 297.7710171 268.2903909 Distance TOF1-TOF0 according to survey: Pmu rescaled < 238 MeV/c [consistent with D2 selection] Value Currently Used in Mark's Code: note that TOF1-TOF0 distance should be 7738.7 [Survey + addendum JAN2010] 7/7/2010 CM27 - RAL

m p The BL can be thought as constituted by TWO blocks: Q4 Q1 Dipole1 DK solenoid Q2 Q3 Dipole2 Q5 Q6 Q7 Q8 Q9 p The BL can be thought as constituted by TWO blocks: US (=PIONS) and DS (=MUONS) BL momentum scale is a pair of values (P0 = momentum at target, PSol= momentum at Decay Solenoid exit, or D2) P0 defines the momentum scale for PIONS PSol defines the momentum scale for MUONS Momentum scale(s) must match the US Diffuser face values  initial optics: M0 easy, once defined Pdif we can work back Psol and P0 through the tables. However the Twiss parameters at Diffuser are “random” Recall also the main philosophy in defining (P0, Psol) select Psol such that BACKWARD GOING muons are captured so increase PURITY 7/7/2010 CM27 - RAL

m kinematic limits 9 initial settings (M0) p peak 409 MeV/c m forward peak m backward peak 238 MeV/c 24/3/2010 CM26 - Riverside

Measure/simulate a,b at TOF1 (e.g.) and study changes Vs Q456/Q789 or single Qi variation: determine the Response Matrix of the BL Compare DATA/MC  it should tell us HOW Twiss Params change when we act on the quadrupoles 7/7/2010 CM27 - RAL

7/7/2010 CM27 - RAL Q456 scan Ptgt PD1 PD2 Q1 Q2 Q3 D1 DK D2 Q4 Q5 Q6 2222 250 408.60 405.27 238.00 102.38 127.91 89.00 323.15 668.63 94.15 79.05 106.01 70.29 138.67 209.82 179.18 2221 220 94.86 127.21 84.34 2215 151 110.67 148.41 98.40 2217 150 126.48 169.62 112.46 2218 142.29 190.82 126.51 2211 158.10 212.02 140.57 2214 160 173.91 233.22 154.63 2235 172 181.82 243.82 161.66 2213 189.72 254.42 168.68 2212 205.53 275.63 182.74 2220 201 221.34 296.83 196.80 2219 254 237.15 318.03 210.86 2237 290 276.68 371.04 246.00 TOTAL 1527 Q789 scan 2229 270 69.34 104.91 89.59 2230 166 83.20 125.89 107.51 2231 349 97.07 146.87 125.43 2232 202 110.94 167.86 143.34 2233 168 124.80 188.84 161.26 2223 400 2228 152 152.54 230.80 197.01 2227 166.40 251.78 215.02 2226 156 180.27 272.77 232.93 2225 191 194.14 293.75 250.85 2224 641 208.01 314.73 268.77 2234 194 242.67 367.19 313.57 7/7/2010 CM27 - RAL

Scans on DK-SOL also carried on Also Q123 are scanned to find the optimal working point (pion production peak) We did the same also for Q12 (Q3=0) [Doublet Configuration used on mid-June due to Q3 failure] Scans on DK-SOL also carried on 7/7/2010 CM27 - RAL

In parallel we need to tune the Q4,…9 in order to match the BL to MICE (M0  Mopt) This NEW optimization is running and we have some points to test [6-200, 10-240] … however it is slow (>1 day per point with initial 20K m) P(MeV/c) 140 200 240 3 Ptgt=321.3/Psol=185 Pdif=151 a=0.2 b=0.56 m t=0.0 mm Ptgt=390/Psol=231 Pdif=207 a=0.1 b=0.36 m Ptgt=453.6/Psol=265 Pdif=245 b=0.42 m t=0.0mm 6 Ptgt=327.6/Psol=189 Pdif=148 a=0.3 b=1.13 m t=5.0 mm Ptgt=408.6/Psol=238 Pdif=215 b=0.78 m t=7.5 mm Ptgt=471.6/Psol=276 Pdif=256 b=0.8 m t=7.5mm 10 Ptgt=338.4/Psol=195 Pdif=164 a=0.6 b=1.98 m t=10 mm Ptgt=429.3/Psol=251 Pdif=229 a=0.4 b=1.31 m t=15.5 mm Ptgt=486/Psol=285 Pdif=267 b=1.29 m b (m) a e (mm rad) (0.2,0.78) 7/7/2010 CM27 - RAL

Efforts (& Bottlenecks) We are producing DATA but we are slow in analyzing them - requires tools and knowledge of beam physics [M. Rayner, C. Rogers, MA] We know little about the QUALITY of DATA produced so far maybe less sexy than (A) but extremely important, we need to assess stability of runs under standard conditions (Integrity Run concept introduced by CR) requires algorithms to be run on a regular basis by shifters to produce a f.o.m. plot over time (runs) [S. Blot / R. R. Fletcher] M. Rayner has provided the template for G4MICE-compliant algorithm Optimization is a slow process (GA+G4Beamline) [MA]. - Matrix Propagation faster [C. Rogers?] 7/7/2010 CM27 - RAL

The End / Spares 7/7/2010 CM27 - RAL

This pair is our goal: how do we get it? P (MeV/c) 3,140 3,200 3,240 finding the element (3,240) means to find the BL optics that matches the MICE optics for a beam of 3 mm rad at a P=240 MeV/c 6,140 6,200 6,240 eN (mm rad) the element (10,200) is the BL optics matching a MICE beam with 10 mm rad at P=200 MeV/c 10,140 10,200 10,240 This pair is our goal: how do we get it? 7/7/2010 CM27 - RAL 16 (*) 700mV ~ 20 mu-/spill

Hyp.: eN0 is known (~1 mm rad trace space) we proceed backward: fix P/eN in the cooling channel fix the optics in the cooling channel (a3,b3) solve the equations giving a,b and t at the US face of the diffuser (*) b0 a0 Diffuser b1 a1 b2 a2 b3 a3 t BL MICE e1 (*) MICE note 176 e0 7/7/2010 CM27 - RAL 17

m p So the question becomes: how do we “tell” the beamline to be a0, b0 at US_Diff? solution(s) we optimise the BL by varying Q4-Q9 let us break the BL in two parts: US and DS in what follows I mean a p m beamline DS part: choose Q4-Q9 shoot a beam check a,b at Diffuser vs “target” values repeat m Q4 Q1 Dipole1 DK solenoid Q2 Q3 Dipole2 Q5 Q6 Q7 Q8 Q9 p US part: we can optimise the MAX number of pions but not much magic left … 7/7/2010 CM27 - RAL 18

d.s. BL tuning: match to diffuser Q4 Q1 Dipole1 DK solenoid Q2 Q3 Dipole2 Q5 Q6 Q7 Q8 Q9 Pp=444 MeV/c Pm=255 MeV/c Pm=214 MeV/c Pm=208 MeV/c fix D1 fix D2 p 7/7/2010 CM27 - RAL 19

http://mice.iit.edu/bl/MATRIX/index_mat.html 7/7/2010 CM27 - RAL

PI- (444MeV/c) MU- (256 MeV/c) at D2 PI- should be here: 30.44 0.943269 0.943269 ~29. RUN 1174-1177 – PI- (444MeV/c) MU- (256 MeV/c) at D2 PI- should be here: 30.44 NB: DTmu(256)= DTmu(300) * beta300/beta256 = 28.55 * .943/.923 = 29.13 7/7/2010 CM27 - RAL

? PI- should be here: 30.44 RUN 1201 – PI- (336.8MeV/c) MU- (256 MeV/c) at D2 MU- should be the same as before … what is that? 7/7/2010 CM27 - RAL

(arbitrary statistics) G4Beamline Generation up To DS Generate Gaussian Beam with defined COV-MAT (arbitrary statistics) COV-MAT x’ x y’ 7/7/2010 CM27 - RAL y

wrap-up … Consider all 9 cases: one Ppi + one Pmu per case (no “shortcuts”) Define initial BL currents (from scaling tables) Check tuning with G4Beamline use simulation output at DS to infer the COV-MAT of the beam Generate a Gauss-beam with that CovMat: E.g. MatLab tool, fast + any number of particles … Propagate / optimise this beam in the DS section By hand (GUI tool) By algorithm (GA) check results versus real data … 7/7/2010 CM27 - RAL