Advertisement.

Slides:



Advertisements
Similar presentations
IntraCavity Laser Absorption Spectroscopy
Advertisements

The HITRAN Molecular Database
Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Electric Quadrupole Transitions in the Band of Oxygen: a Case Study Iouli E. Gordon Samir Kassi Alain Campargue Geoffrey C. Toon a 1  g — X 3  g -
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
CAVITY RING DOWN SPECTROSCOPY
Pair Identity and Smooth Variation Rules Applicable for the Spectroscopic Parameters of H 2 O Transitions Involving High J States Q. Ma NASA/Goddard Institute.
Intracavity Laser Absorption Spectroscopy of PtS in the Near Infrared James J. O'Brien University of Missouri – St. Louis and Leah C. O'Brien and Kimberly.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
1 TCCON at Caltech, May 2008 New Line Parameters for Near-IR Methane and the Oxygen A-Band presented by Linda R. Brown (JPL) World-wide Effort Belgium,
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Dual Wavelength Isotope Ratio FS-CRDS Thinh Q. Bui California Institute of Technology ISMS 2014.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
FASSST Cavity Ringdown Spectroscopy of Atmospherically Broadened Lineshapes in the Millimeter Spectral Region Corey Casto Frank C. De Lucia The Ohio State.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
Information System to Access HITRAN via the Internet Yu. L. Babikov, S. N. Mikhailenko, S. A. Tashkun, V.E. Zuev Institute of Atmospheric Optics, Tomsk,
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the Band of Oxygen Iouli E. Gordon Laurence S. Rothman Samir Kassi Alain.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
CDSD-4000: high-temperature spectroscopic CO 2 databank S.A. Tashkun, V.I. Perevalov Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric.
66th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2011 HIGH RESOLUTION SPECTROSCOPY AND GLOBAL ANALYSIS OF THE TETRADECAD REGION.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
UV-Vis Absorption Spectroscopy
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Misure ottiche su atmosfere planetarie in laboratorio
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Cavity ring down spectroscopy 14 February 2012 CE 540.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
60th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2005 XTDS: A Java-Based Interface to Analyze and Simulate Spectra of Various.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
66th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2011 HIGH RESOLUTION SPECTROSCOPY AND PRELIMINARY ANALYSIS OF C–H STRETCHING.
I. Ventrillard-Courtillot, Th. Desbois, T. Foldes and D. Romanini
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Rotational and Hyperfine Analyses of the Band of 17 O- Containing Isotopologues of Oxygen Measured by CRDS at Room and Liquid Nitrogen Temperatures Olga.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
I. GALLI, S. BARTANLINI, S. BORRI, P. CANCIO, D. MAZZOTTI, P.DE NATALE, G. GIUSFREDI Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide.
A spectroscopic database for acetylene between 5850 and 9415 cm–1
HIGH RESOLUTION SPECTROSCOPY OF THE CARBON CAGE ADAMANTANE C10H16
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
The Near-IR Spectrum of CH3D
A THz PHOTOMIXING SYNTHESIZER BASED ON A FIBER FREQUENCY COMB DEDICATED TO HIGH RESOLUTION SPECTROSCOPY OF ATMOSPHERIC COMPOUNDS Arnaud Cuisset, Laboratoire.
Comb-Assisted Cavity Ring Down Spectroscopy
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
NH3 measurements in the far-IR
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
     A molecular iodine atlas in ascii format   Houssam Salami and Amanda Ross       Laboratoire de Spectrométrie Ionique et Moléculaire, Université.
“Brief” update on ACE water vapour
An accurate and complete empirical line list for water vapor
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
d'Opale, F Dunkerque, France,
Calculations and first quantitative laboratory measurements of O2 A-band electric quadrupole line intensities and positions 16O2 b(1) ← X (1) PQ(11) magnetic.
Presentation transcript:

Advertisement

PI-12

B. V. Perevalov, S. Kassi , and A. Campargue High sensitivity CW-CRDS spectroscopy of the eight most abundant CO2 isotopologues between 5851 and 7045 cm-1 Critical review of the current databases B. V. Perevalov, S. Kassi , and A. Campargue Laboratoire de Spectrométrie Physique, CNRS Université Joseph Fourier de Grenoble, France V. I. Perevalov , S. A. Tashkun IAO Tomsk, Russia

I.- The CW-CRDS spectrometer with DFB lasers in the 1.4-1.7 mm range

Cavity Ring Down Sectroscopy Laser output T OFF time I output ON Ring Down ! (1 à 200 µs) OFF Laser 

Cavity Ring Down T T - empty cell - with gaz t t0 Absorption losses Laser output T Absorption losses time Intensity - empty cell t - with gaz t0

Cavity Ring Down T T Laser output Spectrum Wavelength scan Ring down variation of the Ring down

PI-08

A compact CW-CRDS spectrometer (S. Kassi, D A compact CW-CRDS spectrometer (S. Kassi, D. Romanini) 1480-1700 nm (5940-7030 cm-1) 6nm/diode 40 diodes Lambdameter Laser diode n=f(T,I) Optical isolator Coupler -50 50 100 threshold Laser OFF AO Modulator laser ON Photodiode

“routine” CW-CRDS (8000) - 7000 - 5850 cm-1 Spectral coverage: (1250) - 1428 -1705 nm (8000) - 7000 - 5850 cm-1 Typical noise level: amin~3×10-10 cm-1 1 % intensity attenuation after 300 km High dynamics: absorption coefficients from 10-5 to 10-9 cm-1 are measured on a single spectrum. Doppler limited resolution Wavenumber accuracy is about 0.001 cm-1

Illustration of the achieved sensitivity: The example of the a1Δg(0)−X3Sg(1) of O2 k=8×10-31cm/molec =2×10-11cm 1 % absorbance after 5000 km Chem. Phys. Lett. 409 (2005) 281–287

the third dimension of an absorption spectrum Sensitivity: the third dimension of an absorption spectrum

636 HITRAN

636 11121-00000

636

II. Line intensity measurements:

636

636 PI-O6

III. Rovibrational analysis About 10 lines observed/cm-1: Hot bands up to Elow=3004 cm-1 relative concentration of 5×10-7 Minor isotopologues 828: 3.9×10-6 Impurities (the cell has a good memory!!)

Natural isotopic abundance of CO2 molecule 626 0.98420 636 0.01106 628 0.0039471 627 0.000734 638 0.00004434 637 0.00000825 828 0.0000039573

typical rms values of the residuals ~ 1x10-3 cm-1 band-by-band analysis of 121 and 117 bands for 12C and 13C isotopologues respectively typical rms values of the residuals ~ 1x10-3 cm-1

Effective Hamiltonian Model S. A. Tashkun, V. I. Perevalov, J. –L. Teffo 1388 cm-1 667 cm-1 2349 cm-1 } Our spectral region corresponds to DP= 9 We observe transitions reaching P=10-13 polyads with Eup up to 9900 cm-1

Excellent agreement with CDSD However, significant deviations new fit of the EH parameters 626: JMS 230 (2005) 1–21 636: JMS 226 (2004) 146–160 637 and 638: JMS 241 (2007) 90–100 rms=4.2 ×10-3 cm-1 Intrapolyad interactions are accurately predicted and reproduced by the EH model rms=2.7 ×10-3 cm-1

Newly evidenced interpolyad anharmonic interaction: in 638 (2 occurences), 637 (1) and 628 (1) Example: 638: 31113 (P=10) ↔51106 (P= 11)

628 626

IV. Comparison with the current CO2 databases

626 bands lines 4x10-27 28 1903 1x10-26 18 816 4x10-30 50 6210 3x10-29 94 5604 CDSD (4x10-30) 164 13225

pure 636 4x10-25 1x10-25 4x10-28 3x10-29 bands lines 8 774 8 259 18 1694 3x10-29 104 4881

Line positions comparison 626 HITRAN-CRDS GEISA-CRDS HITEMP-CRDS

626 JPL-CRDS JPL-CDSD CDSD-CRDS

628 JPL-CRDS JPL-CDSD CDSD-CRDS

636 JPL-CRDS

626 Line intensities comparison

pure 636

V. Conclusion The 12CO2 and 13CO2 spectra wer recorded in the 5841–7045 cm-1 region with a typical sensitivity of 3×10-10 cm-1. The dynamic on the line intensities is from 10-24 to 3x10-29 cm/molecule. 16932 lines were assigned to 280 bands of 8 isotopologues of CO2. Our data have allowed a significant improvement of the EHs and EDMs of CDSD

Present HITRAN Advantages Drawbacks Complete above 4x10-27 Not sensitive Deviations<0.02 cm-1

Present HITRAN JPL Advantages Drawbacks Complete above 4x10-27 Not sensitive Deviations<0.02 cm-1 JPL Very accurate observations for the strongest bands Pressure shifts and self and air broadening coefficients Incomplete Too long range extrapolation (4x10-30) Some very large deviations Traceability

Present HITRAN JPL CRDS Advantages Drawbacks Complete above 4x10-27 Not sensitive Deviations<0.02 cm-1 JPL Very accurate observations for the strongest bands Pressure shifts and self and air broadening coefficients Incomplete Too long range extrapolation (4x10-30) Some very large deviations Traceability CRDS Nearly complete above 5x10-29 Typical accuracy 1x10-3 cm-1 (1250) - 1428 -1705 nm (8000) - 7000 - 5850 cm-1

Present HITRAN JPL CRDS CDSD Advantages Drawbacks Complete above 4x10-27 Not sensitive Deviations<0.02 cm-1 JPL Very accurate observations for the strongest bands Pressure shifts and self and air broadening coefficients Incomplete Too long range extrapolation (4x10-30) Some very large deviations Traceability CRDS Nearly complete above 5x10-29 Typical accuracy 1x10-3 cm-1 (1250) - 1428 -1705 nm (8000) - 7000 - 5850 cm-1 CDSD Complete (at least for 626, 636 and 628) Excellent predictive abilities for positions and intensities Interpolyad coupling Cannot reproduce JPL accuracy A factor of 2 worse than the CRDS accuracy for line centers of the weak bands

CH4 (PI-12) N2O 16O3 (III-4), 18O3 (PI-8) C2H2 NO2 Our CW-CRDS spectrometer has allowed similar investigations for: H2O, H218O, HDO CH4 (PI-12) N2O 16O3 (III-4), 18O3 (PI-8) C2H2 NO2

Merci

12CO2 HITRAN JPL database CRDS Bands Lines 626 28 1903 50(18) 6210(816) 94 5604 628 7 467 15(3) 2713(179) 25 1922 627 3 159 6 1017 11 767 Total 38 2529 71(21) 9940(995) 130 8293

13CO2 HITRAN JPL database This work Bands Lines 636 8 774 18 (8) 1694 (259) 104 4881 638 4 (1) 446 (55) 28 2466 637 2 (0) 184 (0) 11 992 838 0 (0) 4 170 738 3 130 Total 24 (9) 2324 (314) 150 8639