Wolfgang Lohmann DESY (Zeuthen)

Slides:



Advertisements
Similar presentations
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
Advertisements

17-May-15FCAL collaboration meeting. Krakow.. Radiation hardness of GaAs Sensors K. Afanaciev, Ch. Grah, A. Ignatenko, W. Lange, W. Lohmann, M. Ohlerich.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Investigation of the properties of diamond radiation detectors
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
Luminosity and beam calorimeter report E. Kouznetsova, DESY.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Radiation Hard Sensors for the Beam Calorimeter of the ILC C. Grah 1, R. Heller 1, H. Henschel 1, W. Lange 1, W. Lohmann 1, M. Ohlerich 1,3, R. Schmidt.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Octobre MPI Munich FCAL Workshop in Munich W. Lohmann, DESY The 14 mrad X-angle, two IPs The push-pull option The next calendar dates Where we are.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Beam Monitoring from Beam Strahlung work by summer students  Gunnar Klämke (U Jena, 01)  Marko Ternick (TU Cottbus, 02)  Magdalena Luz (HU Berlin, 03)
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Optimization of the Design of the Forward Calorimeters ECFA LC Workshop Montpellier, 15 November 2003 *FC Collaboration: Colorado, Cracow, DESY(Zeuthen),
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
A Luminosity Detector for the Future Linear Collider Ronen Ingbir Prague Workshop HEP Tel Aviv University.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
December 7, 2005DESY EUDET in FCAL VINCA, Belgrade Univ. of Colorado, Boulder, BNL, Brookhaven, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP,
Electrical features of diamond sensors D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
The Very Forward Region of the ILC Detectors Ch. Grah FCAL Collaboration TILC 2008, Sendai 04/03/2008.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, E. Kouznetsova, W. Lange, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
HEP Tel Aviv University Lumical R&D progress report Ronen Ingbir ECFA - Durham2004 Lumical - A Future Linear Collider detector.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
LumiCal High density compact calorimeter at the ILC Wojciech Wierba Institute of Nuclear Physics PAS Cracow, Poland.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Luminosity Measurement using BHABHA events
Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow,
Summary of the FCAL Workshop Cracow, February 12-13
The very forward region Tel-Aviv meeting summary
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Investigation of diamond sensors for calorimetry
Beamdiagnostics by Beamstrahlung Pair Analysis
Calorimeters of the Very Forward Region
The Very Forward Region of the ILC Detectors
LAT performance studies
Luminosity and beam calorimeter report E. Kouznetsova, DESY
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
Diamond Measurements in Zeuthen
Presentation transcript:

Instrumentation of the very Forward Region of a Linear Collider Detector Wolfgang Lohmann DESY (Zeuthen) Report from the FCAL workshop in Prague (April 16) Some results from SLAC (N. Graf and T Maruyama) April 20 2004 LC Workshop Paris Instrumentation of the forward region

The very Forward Calorimeter Collaboration Recent meeting in Prague, April 16. see: PRC R&D 01/02 Instrumentation of the forward region

IP Functions of the very Forward Detectors Measurement of the Luminosity (LumiCal) Detection of Electrons and Photons at very low angle – extend hermiticity Fast Beam Diagnostics (BeamCal) L* = 3m Shielding of the inner Detector 300 cm VTX FTD IP LumiCal BeamCal

Optimisation of shape and segmantation Measurement of the Luminosity Gauge Process: e+e- e+e- (g) Goal: 10-4 Precision (LEP: 3.4 exp.; 5.4 theor.) 10-4 10-4 Physics Case: sZ for Giga-Z , Two Fermion Cross Sections at high Energy, Threshold Scans Technology: Si-W Sandwich Calorimeter Optimisation of shape and segmantation MC Simulations Alignment with Laser Beams Close contacts to Theorists (Cracow, DESY)

and mechanical Precision Measurement of the Luminosity LumCal IP < 4 μm Requirements on Alignment and mechanical Precision (rough Estimate) < 0.7 mm Inner Radius of Cal.: < 1-4 μm Distance of Cals.: < 60 μm Radial beam position: < 0.7 mm

Measurement of the Luminosity Laser Alignment System Simple CCD camera, He-Ne red laser, Laser translated in 50 mm steps Jagiellonian Univ. Cracow Photonics Group reconstruction of the laser spot (x,y) position on CCD camera

Measurement of the Luminosity e+e- e+e- (g) Simulations with BHWIDE 28 cm 15 cylinders * 24 sectors * 30 rings = 10800 cells 8 cm Rings R L 6.10m

Energy and Angular resolution Simulation: Bhwide(Bhabha)+CIRCE(Beamstrahlung)+beamspred Events selection: acceptance, energy balance, azimuthal and angular symmetry.

Some systematics in Q Reconstruction ! Stripped LumiCal acolinearity Q resolution Some systematics in Q Reconstruction !

Fast Beam Diagnostics (BeamCal) e+e- pairs from beamstrahlung are deflected into the LCAL 15000 e+e- per BX 10 – 20 TeV 10 MGy per year Rad. hard sensors GeV Technologies: Diamond-W Sandwich Scintillator crystals Gas ionisation chamber

Schematic views Heavy crystals W-Diamond sandwich Space for electronics sensor

Observables Fast Beam Diagnostics (BeamCal) first radial moment detector: realistic segmentation, ideal resolution single parameter analysis, bunch by bunch resolution first radial moment first moment in 1/r thrust value total energy angular spread E(ring ≥ 4) / Etot (A + D) – (B + C) (A + B) – (C + D) E / N forward / backward calorimeter

Horizontal waist shift Fast Beam Diagnostics (BeamCal) detector: realistic segmentation, ideal resolution single parameter analysis, bunch by bunch resolution --- 24 6 0.4 0.001 0.002 0.7 4.3 2.7 0.2 0.5 1.5 2.1 uncertainty. Beam Diag. nominal None 0 μm 360 μm Horizontal waist shift Vertical waist shift 5 nm 0.1 nm Beam offset in x Beam offset in y ? 0.03 mm mrad Emittance in y Ave. Diff. 10.0 mm mrad Emittance in x Ave. ~ 10 % 300 μm Bunch length z Ave. Shintake Monitor 5.0 nm Bunch width y Ave. 553 nm Bunch width x Ave.

Multi Parameter Analysis σx Δσx σy Δσy σz Δσz 0.3 % 0.4 % 3.4 % 9.5 % 1.4 % 0.8 % 0.3 % 0.4 % 3.5 % 11 % 1.5 % 0.9 % 0.9 % 1.0 % 11 % 24 % 5.7 % 24 % 1.6 % 1.9 % 1.8 % 1.1 % 16 % 27 % 3.2 % 2.1 %

First Look at Photons σx = 650 nm σy = 3 nm nominal setting (550 nm x 5 nm)

Detection of Electrons and Photons Realistic beam simulation Efficiency to identify energetic electrons and photons (E > 200 GeV) √s = 500 GeV Includes seismic motions, Delay of Beam Feedback System, Lumi Optimisation etc. Fake rate

• Generate 330 bunches of pair • Pick 10 BX randomly and calculate High Energy Electron Detection in NLC LUMON N. Graf and T. Maruyama (SLAC) • Beampipe radius: IN 1 cm, OUT 2 cm • Detector: 50 layers of 0.2 cm W + 0.03 cm Si Zeuthen R- segmentation LUMON • Generate 330 bunches of pair backgrounds. • Pick 10 BX randomly and calculate average BG in each cell, <E>background • Pick one BX background and generate one high energy electron. • EBG + Eelectron - <E>background, in each cell • Apply electron finder. OUT IN 11 cm

High Energy Electron Detection Pair Background 250 GeV Electron BG 250 GeV e- Deposited Energy (arb. Units) Ebg + Eelectron - <Ebg> Si Layers

Electron finder 2 distribution  Use first several layers as shield. Use towers past layer 10 as seeds for a fixed-cone algorithm to cluster cells. - physical size of shower doesn’t change - simplifies geometry handling - single pass through the data Cuts on cluster width and longitudinal shower 2. 250 GeV e- Background Cut at 450.

Electron Detection Efficiency GeV 6 Efficiency (%) Energy (GeV) 50 100 150 200 250 10 20 30 40 60 70 80 90 Point 6 Point 5 Point 4 Point 3 Point 2 Point 1 2 Y (cm) 3 5 4 1 X (cm)

Background Pileup What happens if we do not have single bunch time resolution? The detection efficiency does not degrade quickly, but the fake rake increases. Fake rate (all cluster energies): 1 bx 5% 2 20 3 40 4 47 Fakes are concentrated in hotspots, not uniform in phi. Expect rejection to improve with further study.

Sensor prototyping, Diamonds Different surface treatments : #1 – substrate side polished; 300 um #2 – cut substrate; 200 um #3 – growth side polished; 300 um #4 – both sides polished; 300 um Diamond; Size: 12x12 mm 2 Metallisation: 10 nm Ti + 400nm Au Current (I) dependence on the voltage (V) Ohmic behavior for ‘ramping up/down’, hysteresis Charge collection distance is saturated to 60 mm at ~300V

Sensor prototyping, Diamonds Charge Collection distance vs. dose #2 – cut substrate; 200 um #1 – substrate side polished; 300 um

Oscillograms of Tetrod-BJT Amplifier Preamplifier Characteristics Oscillograms of Tetrod-BJT Amplifier Preamp output 20ns/div Shaper output 20ns/div

Light Yield from direct coupling Sensor prototyping, Crystals Light Yield from direct coupling Plastic scintilator and using a fibre Study with heavy crystals (Cerenkov light) is going on ~ 15 %

Sensor prototyping, C3F8 Gas Ionisation Chamber Pads for charge collection Beam Test,e- beam, 10-40 GeV (IHEP) Pressure vessel

Offers for GaAs LPI group Lebedev Physical Institute, Moscow IHEP, Protvino NCPHEP, Minsk SIPT, Tomsk ICBP, Puschino

Summary MC Simulations to optimise the Design of the forward calorimeters are progressing Different Detector Technologies for BeamCal are under study BeamCal has a great potential for fast beam diagnostics Tests with Sensor Prototypes and preamplifier have been started After about one year we will present a Design The goal is to start after with the construction and test of a prototype

Charge collection distance measurements Qmeas. = Qcreated x ccd / L Using electrons from a Sr90 source (mips) & Gate PA discr delay ADC Sr90 PM1 PM2 diamond Scint.

Charge collection distance measurements The sensors are not irradiated Upper curve is ramping up HV, Lower ramping down. Charge collection distance is saturated to 50 mm at ~300V

Sensor prototyping and lab tests Current (I) dependence on the voltage (V) Ohmic behavior for ‘ramping up/down’, hysteresis Resistance in the order of 100 TOhm Current decays with time After 24 h nearly 1/2

(Severe background for particle Detection of Electrons and Photons essential parameters: Small Molière radius High granularity Longitudinal segmentation Two photon event rejection e+e- e+e- m+m- (Severe background for particle searches) Electromagnetic fakes 1% from physics 2% from fluctuations