Unit 19 Calculations with the Mole

Slides:



Advertisements
Similar presentations
Chemical Quantities Chapter 9
Advertisements

Chapter 9 Chemical Quantities. 9 | 2 Information Given by the Chemical Equation Balanced equations show the relationship between the relative numbers.
Bell Ringer What is a Mole? What is the mass of a NaCl molecule?
Introduction to Chemical Reactions
Read Section 5.4 before viewing the slide show.. Unit 19 Calculations with the Mole Conversion Factor Approach (5.4) Mole-to-Mass and Mass-to-Mole Conversions.
The factor label method u A way to solve math problems in chemistry u Used to convert km to miles, m to km, mol to g, g to mol, etc. u To use this we.
Copyright Sautter 2003 STOICHIOMETRY “Measuring elements” Determining the Results of A Chemical Reaction.
April 3, 2014 Stoichiometry. Stoichiometry is the study of quantities of materials consumed and produced in chemical reactions Stoikheion (Greek, “element”)
Chapter 12 Stoichiometry 12.2 Chemical Calculations
Chapter 12 Stoichiometry part 1. Stoichiometry The study of quantitative relationships between amounts of reactants used and products formed by a chemical.
Choose Your Category The MoleAverage Atomic Mass and Molar Mass FormulasPercentage Composition Limiting Reactants Percentage Yield and Error Vocab 100.
Chapter Calculations with Chemical Formulas and Equations Chemistry 1061: Principles of Chemistry I Andy Aspaas, Instructor.
Things you must KNOW and what to expect  Things you must KNOW  You must KNOW your polyatomics  You must KNOW how to write a balanced formula  You have.
Sec. 11.2: Stoichiometric Calculations
Stoichiometry Section 12.1.
Chemical Reactions Chapter 7 Pg
Chapter 9 Chemical Quantities. Copyright © Houghton Mifflin Company. All rights reserved. 9 | 2 Information Given by the Chemical Equation Balanced equations.
The Mole & Stoichiometry!
Stoichiometry – Chemical Quantities Notes. Stoichiometry Stoichiometry – Study of quantitative relationships that can be derived from chemical formulas.
Performing a Mass-Mass Stoichiometry Calculation
Stoichiometry Chemical Quantities Chapter 9. What is stoichiometry? stoichiometry- method of determining the amounts of reactants needed to create a certain.
Chap. 9: Stoichiometry Identify the mole ratio of any two species in a chemical reaction. Calculate theoretical yields from chemical equations.
Chemistry 20 Stoichiometry. This unit involves very little that is new. You will merely be applying your knowledge of previous units to a new situation.
Stoichiometry is… Greek for “measuring elements” Defined as: calculations of the quantities in chemical reactions, based on a balanced equation. There.
01 StoichiometryChapter 12. What conversion factors would you need if you were going to move from grams to liters? Solve the following problems. –How.
Mole GRAM FORMULA MASS MOLES TO GRAMS AND GRAMS TO MOLES.
Can’t directly measure moles Measure units related to moles: –Mass (molar mass) –Number of particles (6.02 x ) –Liters of gas (22.4 Liters at STP)
Stoichiometry. Do Now A recipe calls for one cup of milk and three eggs per serving. You quadruple the recipe because you are expecting guests. How much.
Calculating Quantities in Reactions Use proportional reasoning to determine mole ratios from a balanced chemical equation. Explain why mole ratios are.
By Steven S. Zumdahl & Donald J. DeCoste University of Illinois Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry,
Stoichiometry. Review: Dimensional Analysis Goal: To make the units cancel out Strategy: Start out with the quantity given that you are trying to convert.
Ch. 9.1 & 9.2 Chemical Calculations. POINT > Define the mole ratio POINT > Use the mole ratio as a conversion factor POINT > Solve for unknown quantities.
Finding and Using Molar Ratios The coefficients in a balanced chemical equation can be used to determine the relative number of molecules, formula units,
12.2 Chemical Calculations > 12.2 Chemical Calculations > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 12 Stoichiometry.
Stoichiometry: the study of the quantitative relationships that exist between the amounts of reactants and products in a chemical reaction. Stoichiometry.
Chapter 9 Chemical Quantities.
Stoichiometry.
Calculations from Chemical Equations
Intro to Ch 9 Pg 267 #2= work w/partner (a-f)=10 min
Stoichiometry II.
Stoichiometry Section 12.1.
MASS - MASS STOICHIOMETRY
Law of Conservation of Matter
Chapter 12 Stoichiometry.
Using the Balanced Equation
12.1 – What is Stoichiometry?
Calculations with Equations
Calculations with Equations
Chemical Calculations
Chemical Reactions Unit
Ch 12.2 Chemical Calculations
12.2 Chemical Calculations
Stoichiometry.
Stoichiometry – Mr. Mole.
Ch. 9 Notes -- Stoichiometry
Stoichiometry.
Chapter 9 Balancing Equations Limiting Reagents
Quantity Relationships in Chemical Reactions
Chemical Calculations
Chapter 12 Stoichiometry 12.2 Chemical Calculations
Avogadro’s Number: 1 mole = 6.02 x 1023 particles
9.1 NOTES Stoichiometry.
Stoichiometry Moles to Moles.
Stoichiometry Section 12.1.
Stoichiometry.
Chapter 12 Stoichiometry
Stoichiometry.
12 g Carbon-12 = 1 mole of carbon atoms
7.1 Describing Reactions In a chemical reaction, the substances that undergo change are called reactants. The new substances formed as a result of that.
Mass to Mass Conversions
Presentation transcript:

Unit 19 Calculations with the Mole Conversion Factor Approach (5.4) Mole-to-Mass and Mass-to-Mole Conversions (5.4) Mole and Mass Relationships in Chemical Equations (5.4)

Conversion Factor Approach (5.4) A common approach for calculating a wide range of quantities is called the conversion factor approach. Its premises are: Multiplying any quantity by the number “1” returns the same quantity A factor which has a numerator equal to its denominator is equal to “1” A starting quantity can be multiplied by any number of conversion factors to simply change the units on the original quantity A simple example Convert 15 feet to yards (you can do this in your head – this just shows the approach) The conversion factor is 1 yd = 3 feet. The factor that has or is equal to “1” since the numerator and denominator are the same in each factor. Thus, our initial measured quantity may be multiplied by either one without changing the measured length. The calculation sets up as: The conversion factor is written in the orientation that cancels the original unit – feet – leaving yd for the final answer.

Mole-to-Mass and Mass-to-Mole Conversions (5.4) From the previous unit, we know that we can identify one mole of a material with Avogadro’s number of particles (6.02 x 1023 particles) and also a mass equal to the formula mass, molecular mass, or molar mass (all the same number) in grams. The mole then provides a convenient set of conversion factors that can be used in working problems. Consider NH3: 1 mol NH3 = 6.02 x 1023 NH3 molecules = 17 g NH3 Example problems: How many grams of NH3 are in 12.5 mol of NH3 ? How many mol of NH3 are in 145 g of NH3 ? How many NH3 molecules are in 35.0 g of NH3 ? Desired Quantity Given Quantity Conversion Factor

Mole and Mass Relationships in Chemical Equations (5.4) The conversion factor approach may also be used to address mass and mole relationships across a chemical equation. Consider the equation: C3H8 (g) + 5 O2(g) → 3 CO2 (g) + 4 H2O (g) A question is posed that asks how many grams of CO2 could be produced from 50.0-g of C3H8 reacted with an excess of oxygen. The mass of CO2 produced will be dependent on the number of grams of C3H8 since there is plenty of oxygen. The coefficients give the mole relationships in the chemical reaction. For every 1 mol of C3H8 burned 3 mol of CO2 are produced Since the relationships between moles and mass is known through the molar masses, there is sufficient information given to solve the problem. The next slide illustrates a method of handling this sort of problem using the conversion factor approach

Application of the Conversion Factor Approach in Chemical Equations (5 The question is: How many grams of CO2 can be produced from completely reacting 50.0-g of C3H8? Consider the following table. The information in the first row is from the specific problem being presented – the mass of C3H8 given and the unknown mass of CO2. The second row simply reproduces the chemical equation for reference. The third and fourth rows give information related to the chemical equation given. The coefficients in the chemical equation give the mole ratios and the conversion to mass is done by multiplying the number of moles times the molar mass. All quantities in the shaded area represent the same amount of chemical reaction – they can be taken in any pair to form a conversion factor that is equal to “1”.

Application of the Conversion Factor Approach in Chemical Equations (5 The question is: How many grams of CO2 can be produced from completely reacting 50.0-g of C3H8? Consider the following table. First, set up write down the quantity being sought and the given amount in the conversion factor setup as: To determine the conversion factor to be used, recognize that its denominator will have to be in g C3H8 to cancel the measured quantity and its numerator will have to be in g CO2 to come up with the desired quantity. Those numbers are taken from the shaded area below the equation.

Application of the Conversion Factor Approach in Chemical Equations (5 This approach is easily used to solve other problems related to the balanced chemical equation. Examples: How many g of O2 will react with 75 g of C3H8? How many moles of water will be formed in carrying out this reaction with 350 g of O2 ?