ILC Baseline BDS Collimation Depth Calculations

Slides:



Advertisements
Similar presentations
EXTRACTION BEAM LOSS AT 1 TEV CM WITH TDR PARAMETERS Y. Nosochkov, G. White August 25, 2014.
Advertisements

4.1/9.1m L* Optics & Performance Glen White, SLAC SiD Meeting, SLAC Jan 13, 2015.
1 Collimation Simulations and Optimisation Frank Jackson ASTeC, Daresbury Laboratory.
BDS Change Request: Support of Single L* Optics Configuration Shared by both Detectors Glen White, Nick Walker Sept MDI/CFS Ichinoseki.
Overview of Beam Delivery System Final Focus Optics Collimator Final Doublet Extraction/Dump Others S.Kuroda ( KEK ) MDI meeting at SLAC 1/6/2005.
Shielding Studies using MARS Monte Carlo code Noriaki Nakao (SLAC) Jan. 6, 2005, WORKSHOP Machine-Detector Interface at ILC, SLAC.
Summary of wg2a (BDS and IR) Deepa Angal-Kalinin, Shigeru Kuroda, Andrei Seryi October 21, 2005.
Transport formalism Taylor map: Third order Linear matrix elementsSecond order matrix elements Truncated maps Violation of the symplectic condition !
NLC - The Next Linear Collider Project NLC IR Layout and Background Estimates Jeff Gronberg/LLNL For the Beam Delivery Group LCWS - October 25, 2000.
ILC BDS Collimation Optimisation and PLACET simulations Adina Toader School of Physics and Astronomy, University of Manchester & Cockcroft Institute, Daresbury.
LCWS ’05 Machine Detector Interface Design Updates Tom Markiewicz SLAC 22 March 2005.
NLC - The Next Linear Collider Project Backgrounds Update Tom Markiewicz SLAC LCWS Cornell 15 July 2003.
NLC - The Next Linear Collider Project IR Working Group Summary Tom Markiewicz LC R&D Workshop, UCSC June 29, 2002.
Status of ongoing studies for comparing 2-mrad and 20-mrad IRs T. Maruyama SLAC.
IR Beamline and Sync Radiation Takashi Maruyama. Collimation No beam loss within 400 m of IP Muon background can be acceptable. No sync radiations directly.
T1008 status W.Baldini for the Ferrara and Padova SuperB-IFR Group.
1 ATF2 Tuning and its application to ILC and CLIC FFS/IR region ASTeC and MAN : working together on tuning methods for the ATF2 and ILC IR/extraction design.
NLC - The Next Linear Collider Project NLC Backgrounds What’s New? Tom Markiewicz LC’99, Frascati, Italy October 1999.
CLIC main detector solenoid and anti-solenoid impact B. Dalena, A. Bartalesi, R. Appleby, H. Gerwig, D. Swoboda, M. Modena, D. Schulte, R. Tomás.
Considerations on Interaction Region design for Muon Collider Muon Collider Design Workshop JLab, December 8-12, 2008 Guimei Wang, Muons,Inc., /ODU/JLab.
New Progress of the Nonlinear Collimation System for A. Faus-Golfe J. Resta López D. Schulte F. Zimmermann.
Matching recipe and tracking for the final focus T. Asaka †, J. Resta López ‡ and F. Zimmermann † CERN, Geneve / SPring-8, Japan ‡ CERN, Geneve / University.
Backgrounds in the NLC BDS ISG9 December 10 – Takashi Maruyama SLAC.
Details of space charge calculations for J-PARC rings.
ILC Beam Delivery System / MDI Issues for LCC-phase (~
LCWS2004 Paris 1 Beam background study for GLC Tsukasa Aso, Toyama College of Maritime Technology and GLC Vertex Group H.Aihara, K.Tanabe, Tokyo Univ.
Beam-Beam Background and the Forward Region at a CLIC Detector André Sailer (CERN PH-LCD) LC Physics School, Ambleside 22st August, 2009.
ILC collimation using Beam Delivery Simulation (BDSIM) S. T. Boogert, L. Nevay, J. Snuverink, H. Garcia Morales ALCWS KEK, Tsukuba, Japan 20 th April 2015.
Recent Studies on ILC BDS and MERIT S. Striganov APD meeting, January 24.
ILC-GDE Meeting Beijing Feb Effect of MDI Design on BDS Collimation Depth Frank Jackson ASTeC Daresbury Laboratory Cockcroft Institute.
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
L. Keller 3/18/02 Beam-Gas-Bremsstrahlung and Coulomb Scattering in the NLC Beam Delivery System Conditions for Calculation: 1. Program is DECAY TURTLE.
COMPENSATION OF DETECTOR SOLENOID FIELD WITH L*=4.1M Glen White, SLAC April 20, 2015 ALCW2015, KEK, Japan.
Muons, Inc. 14 Jan 2010 S. Kahn--IR Quads 1 IR Quadrupoles with Exotic Materials Steve Kahn, Muons Inc. Bob Palmer, BNL Don Summers, Ole Miss.
1 O. Napoly ECFA-DESY Amsterdam, April 2003 Machine – Detector Interface : what is new since the TDR ? O. Napoly CEA/Saclay.
Preliminary Result on L*=1.5m CEPC Interaction Region Yiwei Wang, Dou Wang, Sha Bai Yingshun Zhu, Teng Yue CEPC acc. meeting, 5 September 2014.
BDS Status Update Glen White, SLAC July ADI Fuze Meeting.
MDI Simulations at SLAC Takashi Maruyama, Lew Keller, Thomas Markiewicz, Uli Wienands, SLAC MAP Collaboration Meeting, FNAL June 21, 2013.
ILC BDS Commissioning Glen White, SLAC AWLC 2014, Fermilab May 14 th 2014.
MAIN DUMP LINE: BEAM LOSS SIMULATIONS WITH THE TDR PARAMETERS Y. Nosochkov E. Marin, G. White (SLAC) LCWS14 Workshop, Belgrade, October 7, 2014.
Baseline BDS Design Updates Glen White, SLAC Sept. 4, 2014 Ichinoseki, MDI/CFS Meeting.
Design challenges for head-on scheme Deepa Angal-Kalinin Orsay, 19 th October 2006.
The design of the 2mrad extraction line Rob Appleby Daresbury Laboratory On behalf of the SLAC-BNL-UK-France task force ILC European Regional Meeting and.
JLEIC MDI Update Michael Sullivan Apr 4, 2017.
Yingshun Zhu Design progress of QD0 in CEPC Interaction Region
Collimation Simulations and Optimisation
Update of the SR studies for the FCCee Interaction Region
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
M. Sullivan International Review Committee November 12-13, 2007
Layout of Detectors for CLIC
LHeC interaction region
The MDI at CEPC Dou Wang, Hongbo Zhu, Huamin Qu, Jianli Wang, Manqi Ruan, Qinglei Xiu, Sha Bai, Shujin Li, Weichao Yao, Yanli Jin, Yin Xu, Yiwei Wang,
Final Focus Synchrotron Radiation
ATF2 IP Tuning Task Simulation Updates
NEW DESIGN OF THE TESLA INTERACTION REGION WITH l* = 5 m
Updates on IR and FF for super-B factory
The 2mrad horizontal crossing angle IR layout for the ILC
Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group
CEPC main ring magnets’ error effect on DA and MDI issues
CNGS Proton beam line: news since NBI2002 OUTLINE 1. Overview
Higgs Factory Backgrounds
Final Focus optics for Possible New B-Line
S.Kuroda ( KEK ) Final Focus Optics Collimeter Final Doublet
2001 Collimation System & FF integrated design (NLC)
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
Studies of crossing angle and SR effects for CLIC TENTATIVE
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Status of IR / Nonlinear Dynamics Studies
Sha Bai CEPC AP meeting Work summary Sha Bai CEPC AP meeting
Presentation transcript:

ILC Baseline BDS Collimation Depth Calculations Glen White, SLAC August 21, 2014

Overview Calculate collimation apertures based on no SR photons hitting IR region (QF1 -> IP+50m) 3.5m (5.5m DL) L* 4.5m (6.3m DL) L* TDR Baseline (500 GeV CME) Tracking-based calculation (Lucretia) to include non-linear field elements (FD sextupoles, octupoles).

SR Radiation in IR Region SiD (L*=3.5m) ILD (L*=4.5m) SR from particles covering all QF1 phase-space Rays not hitting apertures shown Aperture @ IP = 14mm (SiD), 16mm (ILD) radius inner vertex detector layer (L=125mm)

3.5m vs. 4.5m L* IR Geometry SiD (L*=3.5m) ILD (L*=4.5m) 5.5m 6.3m Difference in detector and extraction system design for 2 IR’s No simple scaling for collimation depth

2D Particle Phase Space @ QF1 Entrance (L*=3.5m) 1e6 Macro-particles, uniform random distribution in 2D phase-space. Red tags particles generating SR photon hits in IR. Blue OK. Ellipse fit to define SR aperture. Missing particles in above plots = collimated by IR magnet apertures.

4D Particle Phase Space @ QF1 Entrance (L*=3.5m) Generate initial phase-space from previous plots. Additional hit particles present due to x-y correlations. Use minimizer to find simultaneous x and y phase space ellipse apertures which ensure no IR SR photon hits (cyan ellipses).

Allowed Particle Apertures @ IP L* = 3.5m , 4.5m

Phase Space Tracking SP1 -> QF1 (L*=3.5m) Track 4D phase space from entrance SP1 spoiler to QF1 magnet entrance. Blue shows particles with clear transmission to QF1 Red shows particles collimated by magnet apertures (all spoiler apertures deactivated)

Phase Space @ QF1 Entrance (L*=3.5m) Particles tracked from SP1 and not hitting magnet aperture Blue = No SR hits in IR Red = SR hits aperture in IR Cyan ellipse = SR aperture @ QF1 from previous calculation Set betatron collimation apertures to cut red particles that generate SR hits in IR

Betatron Spoiler Apertures Name L*=3.5m L*=4.5m Existing Lattice X / mm (Nσx) Y / mm (Nσy) Y / mm (Nσx) SP1 - 0.3 (15) 0.25 (250) SP2 1.24 (11) 0.2 (24) 0.3 (2.7) SP3 0.5 (25) 0.22 (219) SP4 0.59 (5.4) 0.22 (26) SP5 0.42 (11) “-” = no collimation needed at this location to prevent IR SR hits. (L*=3.5m optics completely shielded by magnet apertures) Tightest aperture: SP2/SP4 (X) 2.7σ = 0.7% Beam loss = 36kW for existing lattice TDR calls for 1-2E-5 main beam loss => 4.3σ tightest collimation aperture. (Max with all muon spoiler space filled = 1E-3 beam loss => 3.3σ) Tightest L*=4.5m aperture = SP4 = 5.4σ

Summary and Next Steps Collimation apertures calculated for baseline optics for both L* configurations based on SR hits in IR. 3.5m L* optics completely shielded by magnet apertures 4.5m L* optics requires loose collimation (24σ tightest collimation aperture) Next job: calculate collimation efficiency, iterate collimator settings requirement and calculate muon suppression requirements. Possible refinements for SR calculations: Include perturbation of colliding beam IR solenoid field Higher-order QED field calculations?