Stacks.

Slides:



Advertisements
Similar presentations
Rossella Lau Lecture 12, DCO20105, Semester A, DCO Data structures and algorithms  Lecture 12: Stack and Expression Evaluation  Stack basic.
Advertisements

COSC 2006 Chapter 7 Stacks III
Stacks Example: Stack of plates in cafeteria.
C o n f i d e n t i a l Developed By Nitendra NextHome Subject Name: Data Structure Using C Title : Overview of Stack.
Data Structure (Part I) Stacks and Queues. Introduction to Stack An stack is a ordered list in which insertion and deletions are made at one end. –The.
Lecture 5 Sept 15 Goals: stacks Implementation of stack applications Postfix expression evaluation Convert infix to postfix.
Stacks CS 3358 – Data Structures. What is a stack? It is an ordered group of homogeneous items of elements. Elements are added to and removed from the.
Stacks CS-240 Dick Steflik. Stacks Last In, First Out operation - LIFO As items are added they are chronologically ordered, items are removed in reverse.
Lecture 7 Sept 16 Goals: stacks Implementation of stack applications Postfix expression evaluation Convert infix to postfix.
Stacks CS-240 Dick Steflik. Stacks Last In, First Out operation - LIFO As items are added they are chronologically ordered, items are removed in reverse.
Starting Out with C++, 3 rd Edition Chapter 18 Stacks and Queues.
Lecture 6 Feb 12 Goals: stacks Implementation of stack applications Postfix expression evaluation Convert infix to postfix.
Starting Out with C++, 3 rd Edition Chapter 18 – Stacks and Queues.
Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Cpt S 122 – Data Structures Data Structures Stacks.
Stack  A stack is a linear data structure or abstract data type for collection of items, with the restriction that items can be added one at a time and.
CS 1031 C++: Object-Oriented Programming Classes and Objects Template classes Operator Overloading Inheritance Polymorphism.
The Stack Alexander G. Chefranov CMPE-231 Spring 2012.
Data Structures: CSCI 362 – Stack Implementation Data Structures: CSCI 362 – Stack Implementation lecture notes adapted from Data Structures with C++ using.
2 -1 Chapter 2 The stack Stack and Queue Stack: Last-In-First-Out (LIFO) Last-Come-First-Serve (LCFS) only one end Queue: First-In-First-Out (FIFO)
CS 204 Stacks and Queues (not in any book that we are using) From Starting out with C++, 7th edition, by Gaddis, Walters and Muganda (chapter 18, pp
1 Stacks Chapter 4 2 Introduction Consider a program to model a switching yard –Has main line and siding –Cars may be shunted, removed at any time.
1 Stacks – Chapter 3 A stack is a data structure in which all insertions and deletions of entries are made at one end, called the top of the stack. Alternatively,
Data Structures and Algorithms
Data Structures. The Stack: Definition A stack is an ordered collection of items into which new items may be inserted and from which items may be deleted.
CSC 211 Data Structures Lecture 23
EC-211 DATA STRUCTURES LECTURE 8. STACK APPLICATIONS Infix, Prefix, and Postfix Expressions Example – Infix: A+B – Prefix: +AB – Postfix: AB+
Data Structures – Week #3 Stacks. 9.Mart.2012Borahan Tümer, Ph.D.2 Outline Stacks Operations on Stacks Array Implementation of Stacks Linked List Implementation.
Data Structures Stack Namiq Sultan 1. Data Structure Definition: Data structures is a study of different methods of organizing the data and possible operations.
 2000 Deitel & Associates, Inc. All rights reserved. Chapter 12 - Templates Outline 12.1Introduction 12.2Function Templates 12.3Overloading Template Functions.
CHAPTER 3 STACK CSEB324 DATA STRUCTURES & ALGORITHM.
Data Structures & Algorithms
Stack Applications Qamar Rehman.
CHP-3 STACKS.
Stacks A stack is a linear data structure that can be accessed only at one of its ends for storing and retrieving data LIFO (Last In First Out) structure.
Computer Science Department Data Structure and Algorithms Lecture 3 Stacks.
Main Index Contents 11 Main Index Contents Stacks Further Stack Examples Further Stack Examples Pushing/Popping a Stack Pushing/Popping a Stack Class StackClass.
1 Data Structures and Algorithms Stack. 2 The Stack ADT Introduction to the Stack data structure Designing a Stack class using dynamic arrays Linked Stacks.
Applications of Stack Maitrayee Mukerji. Stacks Last In First Out (LIFO List) ◦ FILO? Insertions and Deletions from the same end called the Top Push(),
1 Data Structures and Algorithms Stack. 2 The Stack ADT Introduction to the Stack data structure Designing a Stack class using dynamic arrays Linked Stacks.
Prof. Amr Goneid, AUC1 CSCE 210 Data Structures and Algorithms Prof. Amr Goneid AUC Part 2a. Simple Containers: The Stack.
Review Use of Stack Introduction Stack in our life Stack Operations
Chapter 22 - C++ Templates
Stacks Stacks.
Lecture No.06 Data Structures Dr. Sohail Aslam
Dr. Bernard Chen Ph.D. University of Central Arkansas
Stacks Chapter 7 introduces the stack data type.
Stack and Queue APURBO DATTA.
CSC 172 DATA STRUCTURES.
Stacks Chapter 4.
Data Structures – Week #3
Stack application: postponing data usage
Algorithms and Data Structures
Stack.
CMSC 341 Lecture 5 Stacks, Queues
Stacks Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013.
(not in any book that we are using)
Lecture No.07 Data Structures Dr. Sohail Aslam
Chapter 11 - Templates Outline Introduction Function Templates Overloading Function Templates Class Templates Class.
CSC 143 Stacks [Chapter 6].
Stacks and Queues 1.
Chapter 11 - Templates Outline Introduction Function Templates Overloading Function Templates Class Templates Class.
Stacks and Queues.
Stacks CS-240 Dick Steflik.
Stack.
Data Structures – Week #3
Chapter 22 - C++ Templates
Chapter 22 - C++ Templates
Chapter 11 - Templates Outline Introduction Function Templates Overloading Function Templates Class Templates Class.
Stacks A stack is an ordered set of elements, for which only the last element placed into the stack is accessible. The stack data type is also known as.
CHAPTER 3: Collections—Stacks
Presentation transcript:

Stacks

Stacks “A Stack is a special kind of list in which all insertions and deletions take place at one end, called the Top” Other Names Pushdown List Last In First Out (LIFO) But NO constraints on HOW the problem is solved

Stacks Examples: Books on a floor Dishes on a shelf

Common Operations on Stacks MAKENULL(S): Make Stack S be an empty stack. TOP(S): Return the element at the top of stack S. POP(S): Remove the top element of the stack. PUSH(S): Insert the element x at the top of the stack. EMPTY(S): Return true if S is an empty stack; return false otherwise.

Static and Dynamic Stacks There are two kinds of stack data structure - a) static, i.e. they have a fixed size, and are implemented as arrays. b) dynamic, i.e. they grow in size as needed, and implemented as linked lists

Push and Pop operations of Stack

An Array Implementation of Stacks First Implementation Elements are stored in contiguous cells of an array. New elements can be inserted to the top of the list. top First Element Second Element List Last Element Empty maxlength

An Array Implementation of Stacks 1 2 1 2 3 1 1 2 Problem with this implementation Every PUSH and POP requires moving the entire array up and down.

An Array Implementation of Stacks Since, in a stack the insertion and deletion take place only at the top, so… A better Implementation: Anchor the bottom of the stack at the bottom of the array Let the stack grow towards the top of the array Top indicates the current position of the first stack element.

An Array Implementation of Stacks A better Implementation: top 1 2 First Element Second Element . maxlength Last Element

A Stack Class #ifndef INTSTACK_H #define INTSTACK_H class IntStack { private: int *stackArray; int stackSize; int top; public: IntStack(int); void push(int); void pop(int &); bool isFull(void); bool isEmpty(void); }; #endif

Implementation //******************* // Constructor * //******************* IntStack::IntStack(int size) { stackArray = new int[size]; stackSize = size; top = -1; }

Push // Member function push pushes the argument onto * // the stack. * void IntStack::push(int num) { if (isFull()) cout << "The stack is full.\n"; else { top++; stackArray[top] = num; } }

// Member function pop pops the value at the top // of the stack off, and copies it into the variable // passed as an argument. void IntStack::pop(int &num) { if (isEmpty()) cout << "The stack is empty.\n"; else { num = stackArray[top]; top--; } }

//. // Member function isFull returns true if the stack //*************************************************** // Member function isFull returns true if the stack * // is full, or false otherwise. * //*************************************************** bool IntStack::isFull(void) { bool status; if (top == stackSize - 1) status = true; else status = false; return status; }

//. // Member funciton isEmpty returns true if the //stack //********************************************** // Member funciton isEmpty returns true if the //stack * // is empty, or false otherwise.* //*********************************************** bool IntStack::isEmpty(void) { bool status; if (top == -1) status = true; else status = false; return status; }

// This program demonstrates the IntStack class. #include <iostream // This program demonstrates the IntStack class. #include <iostream.h> #include "intstack.h“ void main(void) { IntStack stack(5); int catchVar; cout << "Pushing 5\n"; stack.push(5); cout << "Pushing 10\n"; stack.push(10); cout << "Pushing 15\n"; stack.push(15); cout << "Pushing 20\n"; stack.push(20); cout << "Pushing 25\n"; stack.push(25);

cout << "Popping. \n";. stack. pop(catchVar); cout << "Popping...\n"; stack.pop(catchVar); cout << catchVar << endl; stack.pop(catchVar); cout << catchVar << endl; stack.pop(catchVar); cout << catchVar << endl; stack.pop(catchVar); cout << catchVar << endl; stack.pop(catchVar); cout << catchVar << endl; }

Program Output Pushing 5 Pushing 10 Pushing 15 Pushing 20 Pushing 25 Popping... 25 20 15 10 5

About Program 1 In the program, the constructor is called with the argument 5. This sets up the member variables as shown in Figure 1. Since top is set to –1, the stack is empty

Figure 3 shows the state of the member variables after all five calls to the push function. Now the top of the stack is at element 4, and the stack is full.

Notice that the pop function uses a reference parameter, num. The value that is popped off the stack is copied into num so it can be used later in the program. Figure 4 (on the next slide) depicts the state of the class members, and the num parameter, just after the first value is popped off the stack.

Implementing other Stack Operations More complex operations can be built on the basic stack class we have just described, e.g. a class called MathStack. MathStack has 2 member functions :- add( ) sub( )

Stack Templates The stack class so far work with integers only. A stack template can be used to work with any data type.

A Linked-List Implementation of Stacks Stack can expand or shrink with each PUSH or POP operation. PUSH and POP operate only on the header cell and the first cell on the list. . Top x y z

Linked List Implementation of Stack class Stack { struct node int data; node *next; }*top; public: void Push(int newelement); int Pop(void); bool IsEmpty(); };

void Stack::Push(int newelement) { node *newptr; newptr=new node; newptr->data=newelement; newptr->next=top; top=newptr; } int Stack:Pop(void) if (IsEmpty()) { cout<<“underflow error”; return;} tempptr=top; int returnvalue=top->data; top=top->next; delete tempptr; return returnvalue;

void Stack::IsEmpty() { if (top==NULL) return true; else return false; }

Program 3 // This program demonstrates the dynamic stack // class DynIntClass. #include <iostream.h> #include "dynintstack.h“ void main(void) { DynIntStack stack; int catchVar; cout << "Pushing 5\n"; stack.push(5); cout << "Pushing 10\n"; stack.push(10); cout << "Pushing 15\n"; stack.push(15);

cout << "Popping. \n";. stack. pop(catchVar); cout << "Popping...\n"; stack.pop(catchVar); cout << catchVar << endl; stack.pop(catchVar); cout << catchVar << endl; stack.pop(catchVar); cout << catchVar << endl; cout << "\nAttempting to pop again... "; stack.pop(catchVar); } Program Output Pushing 5 Pushing 10 Pushing 15 Popping... 15 10 5   Attempting to pop again... The stack is empty.

Application of Stack Data Structures using C and C++, Section 2.3

INFIX, POSTFIX and PREFIX Infix: A+B-C Postfix: AB+C- Prefix: -+ABC Order of Precedence of Operators Exponentiation Multiplication/Division Addition/Subtraction

Infix: ( (A+B)*C-(D-E) ) $ (F+G) Conversion to Postfix Expression ( (AB+)*C-(DE-) ) $ (FG+) ( (AB+C*)-(DE-) ) $ (FG+) (AB+C*DE--) $ (FG+) AB+C*DE- -FG+$ Exercise: Convert the following to Postfix ( A + B ) * ( C – D) A $ B * C – D + E / F / (G + H)

Conversion to Prefix Expression The precedence rules for converting an expression from infix to prefix are identical. The only change from postfix is that the operator is placed before the operands rather than after them. Evaluating a Postfix Expression Each operator in a postfix string refers to the previous two operands in the string.

Algorithm to Evaluate a Postfix Expression opndstk = the empty stack //scan the input string reading one element //at a time into symb while (not end of input) { symb = next input character; if (symb is an operand) push(opndstk, symb) else { /* symb is an operator */ opnd2 = pop(opndstk); opnd1 = pop(opndstk); value = result of applying symb to opnd1 and opnd2; push(opndstk, value); } /* end else */ } /* end while */ return (pop(opndstk)); Example: Postfix Expression: 6 2 3 + - 3 8 2 / + * 2 $ 3 + symb opnd1 opnd2 value opndstk 6 2 6,2 3 6,2,3 + 5 6,5 - 1 1,3 8 1,3,8 1,3,8,2 / 4 1,3,4 7 1,7 * 7,2 $ 49 49,3 52

Conversion of Infix Expression to postfix A+B*C = ABC*+ (A+B)*C = AB+C* There must be a precedence function. prcd(op1, op2), where op1 and op2 are characters representing operators. This function returns TRUE if op1 has precendence over op2 when op1 appears to the left of op2 in an infix expression without parenthesis. prcd(op1,op2) returns FALSE otherwise. For example prcd(‘*’,’+’) and prcd(‘+’,’+’) are TRUE whereas prcd(‘+’,’*’) is FALSE. prcd(‘$’,’$’) = FALSE prcd( ‘(‘ , op) = FALSE for any operator op prcd( op, ‘(‘ ) = FALSE for any operator op other than ‘)’ prcd( op, ‘)‘ ) = TRUE for any operator op other than ‘(‘ prcd( ‘)‘ ,op ) = undefined for any operator op (an error)

Algorithm to Convert Infix to Postfix Example-1: A+B*C opstk = the empty stack; while (not end of input) { symb = next input character; if (symb is an operand) add symb to the postfix string else { while (!empty(opstk) && prcd(stacktop(opstk),symb) ) { topsymb = pop(opstk); add topsymb to the postfix string; } /* end while */ push(opstk, symb); } /* end else */ /* output any remaining operators */ while (!empty(opstk) ) { symb Postfix string opstk A + B AB * + * C ABC ABC* ABC*+

Algorithm to Convert Infix to Postfix Example-2: (A+B)*C opstk = the empty stack; while (not end of input) { symb = next input character; if (symb is an operand) add symb to the postfix string else { while (!empty(opstk) && prcd(stacktop(opstk),symb) ) { topsymb = pop(opstk); add topsymb to the postfix string; } /* end while */ push(opstk, symb); } /* end else */ /* output any remaining operators */ while (!empty(opstk) ) { symb Postfix string opstk ( A + ( + B AB ) AB+ * C AB+C AB+C*

Algorithm to Convert Infix to Postfix Example-3: ( (A-(B+C) ) *D ) $ (E+F) opstk = the empty stack; while (not end of input) { symb = next input character; if (symb is an operand) add symb to the postfix string else { while (!empty(opstk) && prcd(stacktop(opstk),symb) ) { topsymb = pop(opstk); add topsymb to the postfix string; } /* end while */ push(opstk, symb); } /* end else */ /* output any remaining operators */ while (!empty(opstk) ) {

Algorithm to Convert Infix to Postfix Example-3: ( (A-(B+C) ) *D ) $ (E+F) symb Postfix string opstk ( (( A - ((- ((-( B AB + ((-(+ C ABC ) ABC+ ABC+- * (* D ABC+-D ABC+-D* $ $( E ABC+-D*E $(+ F ABC+-D*EF ABC+-D*EF+ ABC+-D*EF+$ opstk = the empty stack; while (not end of input) { symb = next input character; if (symb is an operand) add symb to the postfix string else { while (!empty(opstk) && prcd(stacktop(opstk),symb) ) { topsymb = pop(opstk); add topsymb to the postfix string; } /* end while */ push(opstk, symb); } /* end else */ /* output any remaining operators */ while (!empty(opstk) ) {