Copyright 2014 Davitily.

Slides:



Advertisements
Similar presentations
15.4, 5 Solving Logarithmic Equations OBJ:  To solve a logarithmic equation.
Advertisements

Solving Equations = 4x – 5(6x – 10) -132 = 4x – 30x = -26x = -26x 7 = x.
Properties of Logarithms
Exponential and Logarithmic Equations
7.6 – Solve Exponential and Log Equations
Warm-up 1. Convert the following log & exponential equations 1. Convert the following log & exponential equations Log equationExponential Equation Log.
Properties of Logarithms: Lesson 53. LESSON OBJECTIVE: 1)Simplify and evaluate expressions using the properties of Logarithms. 2)Solve logarithmic equations.
CONVERTING FROM ONE FORM TO ANOTHER EVALUATING PROPERTIES OF LOGS – EXPANDING AND CONDENSING Day 1:
Ch. 3.3 Properties of Logarithms
Warm up. 3.4 Solving Exponential & Logarithmic Equations Standards 13, 14.
Unit 5: Modeling with Exponential & Logarithmic Functions Ms. C. Taylor.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 9-1 Exponential and Logarithmic Functions Chapter 9.
8.5 – Using Properties of Logarithms. Product Property:
Properties of Logarithms Product, Quotient and Power Properties of Logarithms Solving Logarithmic Equations Using Properties of Logarithms Practice.
8.3-4 – Logarithmic Functions. Logarithm Functions.
Copyright © 2009 Pearson Education, Inc. CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3.
Algebra II w/trig. Logarithmic expressions can be rewritten using the properties of logarithms. Product Property: the log of a product is the sum of the.
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Objectives Simplify and evaluate expressions involving logarithms. Solve equations involving.
Copyright © 2015, 2008, 2011 Pearson Education, Inc. Section 5.6, Slide 1 Chapter 5 Logarithmic Functions.
You’ve gotten good at solving exponential equations with logs… … but how would you handle something like this?
SOLVING LOGARITHMIC EQUATIONS Objective: solve equations with a “log” in them using properties of logarithms How are log properties use to solve for unknown.
Common Logarithms - Definition Example – Solve Exponential Equations using Logs.
Solving Logarithmic Equations
12.8 Exponential and Logarithmic Equations and Problem Solving Math, Statistics & Physics 1.
Double Jeopardy $200 Miscellaneous Facts Solving Logs with Properties Solving Log Equations Solving Exponential Equations Graphs of Logs $400 $600 $400.
Property of Logarithms If x > 0, y > 0, a > 0, and a ≠ 1, then x = y if and only if log a x = log a y.
Algebra 2 Notes May 4,  Graph the following equation:  What equation is that log function an inverse of? ◦ Step 1: Use a table to graph the exponential.
Table of Contents Logarithm Properties - Quotient Rule The Quotient Rule for logarithms states that... read as “the log of the quotient is the difference.
Aim: What are the properties of logarithms? Do Now: Rewrite the following exponential form into log form 1.b x = A 2.b y = B HW:p.331 # 16,18,20,22,24,26,28,38,40,42,48,52.
LOGARITHMIC AND EXPONENTIAL EQUATIONS LOGARITHMIC AND EXPONENTIAL EQUATIONS SECTION 4.6.
Copyright © 2011 Pearson, Inc. 3.3 Logarithmic Functions and Their Graphs.
Copyright 2012 Davitily. Given an X-Y Table, Write an Equation in Slope-Intercept Form Step 1: Find the slope. Step 2: Find the y-intercept. Step 3: Substitute.
Copyright 2011 Davitily. How to Find the Missing Angle in a Triangle Using Vertical Angles Step 1: Find the measure of the angle across from the missing.
Copyright 2009 Davitily. Adding Integers Step 1: Identify the positive and negative numbers. Step 2: Add or subtract depending on the signs. Step 1: Identify.
Copyright 2012 Davitily.
Copyright 2015 Davitily.
Copyright 2009 Davitily.
Copyright 2009 Davitily.
Copyright 2009 Davitily.
Copyright 2013 Davitily.
Copyright 2010 Davitily.
Copyright 2009 Davitily.
Copyright 2015 Davitily.
Copyright 2012 Davitily.
Lesson 10.3 Properties of Logarithms
Logarithmic Functions and Their Graphs
Use properties of logarithms
6.5 Applications of Common Logarithms
Copyright 2014 Davitily.
Copyright 2009 Davitily.
Copyright 2013 Davitily.
Copyright 2009 Davitily.
Copyright 2010 Davitily.
Copyright 2009 Davitily.
Copyright 2011 Davitily.
Copyright 2011 Davitily.
Copyright 2012 Davitily.
Copyright 2011 Davitily.
Copyright 2013 Davitily.
Packet #15 Exponential and Logarithmic Equations
Section 5.5 – Logarithmic Equations
5.5 Properties and Laws of Logarithms
Logarithmic and Exponential Equations
Logarithmic and Exponential Equations
SOLVING LOGARITHMIC EQUATIONS
Properties of Logarithmic Functions
Section 12.5 – Logarithmic Equations
More Properties of Logarithms
Definition of logarithm
Solve the equations. 4 2
Presentation transcript:

Copyright 2014 Davitily

Solve a Logarithmic Equation with Common Bases Using the Quotient Property of Logs Step 1: Rearrange the equation using the Quotient Property of Logs. Step 2: Solve the problem ignoring the logs. log 𝑏 𝑥 − log 𝑏 𝑦 = log 𝑏 𝑥 𝑦 log 3 𝑥+23 − log 3 𝑥+7 = log 3 𝑥+23 𝑥+7 log 3 𝑥+23 𝑥+7 = log 3 2 Step 1: Rearrange the equation using the Product Property of Logs. 𝑥+23 𝑥+7 =2 Step 2: Solve the problem ignoring the logs. THIS METHOD ONLY WORKS WHEN THE BASES ARE THE SAME! 𝑥+23 =2 𝑥+7 𝑥+23=2x+14 9=𝑥

For more practice, visit www.mathproblemgenerator.com