What’s Your Angle?.

Slides:



Advertisements
Similar presentations
What’s Your Angle? By Kim Davis. Background Vocabulary Plane: an infinite, flat surface. Parallel lines: lines in a plane that never meet. l l is the.
Advertisements

Angles and Parallel Lines
Angles and Parallel Lines
You will learn to describe relationships among lines, parts of lines, and planes. In geometry, two lines in a plane that are always the same distance.
Angle Relationships Vocabulary
PARALLEL LINES and TRANSVERSALS.
Line & Angle Recognition
GEOMETRY PRE-UNIT 4 VOCABULARY REVIEW ALL ABOUT ANGLES.
Angles and Parallel Lines
Special Pairs of Angles Lesson 8-3. Complementary Angles If the sum of the measures of two angles is exactly 90º then the angles are complementary.
This line is called a transversal.
Line and Angle Relationships Sec 6.1 GOALS: To learn vocabulary To identify angles and relationships of angles formed by tow parallel lines cut by a transversal.
1 Angles and Parallel Lines. 2 Transversal Definition: A line that intersects two or more lines in a plane at different points is called a transversal.
Angle Relationships Common Necessary Vocabulary for Parallel and Intersecting Lines.
Unit 1 Angles and Parallel Lines. Transversal Definition: A line that intersects two or more lines in a plane at different points is called a transversal.
Types of Angles.
Friday October 3, 2014 Bell Ringer: AND Using your own words AND pictures define the following phrases: Supplementary Angles Complementary Angles Right.
VOCABULARY UNIT 3. PARALLEL LINES Lines on the same plane that never intersect.
Angles and Parallel Lines
MCC8.G.5 Angles and Parallel Lines Intersecting Lines Lines that cross at exactly one point. Think of an intersection, where two roads cross each other.
PARALLEL LINES & TRANSVERSALS Parallel Lines - lines in the same plane that will never intersect.
Course 3 Points, Lines, Planes, and Angles The measures of angles that fit together to form a straight line, such as FKG, GKH, and HKJ, add to 180°.
Geometry. Definitions Geometry Definitions 1.straight angle - 180º.
What’s Your Angle? An Introduction to Angle Pair Relationships.
GEOMETRY UNIT 3 VOCABULARY ALL ABOUT ANGLES. ANGLE DEFINITION Angle A figure formed by two rays with a common endpoint.
Parallel Lines & Transversals. Transversal A line, ray, or segment that intersects 2 or more COPLANAR lines, rays, or segments.
Exploring Angle Pairs Unit 1 Lesson 5. Exploring Angle Pairs Students will be able to: Identify Special Angle Pairs and use their relationships to find.
Parallel Lines Cut by Transversal Created by Mrs. Bentley.
What’s Your Angle?.
Angles and Parallel Lines
Parallel Lines and Transversals
Angles and Parallel Lines
What’s Your Angle?.
Parallel Lines and a Transversal
Angle Relationships & Parallel Lines
Angles and Lines.
Alternate Interior Angles
Angles and Parallel Lines
Angle Relationships.
Angle Relationship Notes
Angle Relationships.
Transversal Definition: A line intersecting two or more other lines in a plane. Picture:
Exploring Angle Pairs Unit 1 Lesson 5.
Parallel Lines & Angle Relationships
Parallel Lines and a Transversal Line
Parallel Lines and a Transversal Line
5-1 Lines & Angles To identify relationships between figures in space
Angles and Parallel Lines
Parallel Lines and Transversals
Parallel Lines & Transversals
Parallel Lines, Transversals, Base Angles & Exterior Angles
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
Angles and Parallel Lines
5-1 Lines & Angles To identify relationships between figures in space
Angles and Parallel Lines
Angles on Lines and Figures Vocabulary
Angles and Parallel Lines
Objectives: Identify parallel and perpendicular lines
Warm-up: Quiz your neighbor with your flash cards!!
TRANSVERSAL VOCABULARY
Angles and Parallel Lines
Angle Relationships with Parallel Lines
Angles and Parallel Lines
Warmup! Use the figure at right to: 1. Name the set of parallel lines.
Angles and Parallel Lines
Presentation transcript:

What’s Your Angle?

Background Vocabulary plane: an infinite, flat surface angles: two rays with a common endpoint congruent angles: two angles that have equal measures transversals: lines that intersect two or more lines (It’s the one line that both angles are touching.) parallel lines: lines in a plane that never meet. l l is the symbol for parallel lines.

Complementary Angles Two angles whose measure add up to 90°. 35° 55°

Supplementary Angles Two angles whose measures add up to 180°. 90° 90°

Vertical Angles Vertical angles are diagonally across from each other. Vertical angles are congruent.

Vertical Angles Angle 1 and Angle 4 are congruent angles. 1. 2. 3. 4. 5. 6. 7. 8. Angle 1 and Angle 4 are congruent angles.

Relationships Matter When a transversal crosses two PARALLEL lines, we can say a lot about their angle measures.

When lines are parallel: 1. 2. 3. 4. 5. 6. 7. 8. = indicates lines are parallel

Alternate Interior Angles Alternate Interior Angles are on “alternate” (opposite) sides and on the “interior” (inside) of the parallel lines.

Alternate Interior Angles Alternate interior angles are congruent. 1. 2. 3. 4. 5. 6. 7. 8. Angle 3 and Angle 6 are congruent angles. This means they have the same measure.

Alternate Exterior Angles Alternate exterior angles are on “alternate” (opposite) sides and on the “exterior” (outside) of the parallel lines.

Alternate Exterior Angles Alternate exterior angles are congruent. 1. 2. 3. 4. 5. 6. 7. 8. Angle 1 and Angle 8 are congruent angles. This means they have the same measure.

Corresponding Angles Corresponding angles are in the same relative location.

Corresponding Angles Angle 1 and Angle 5 are congruent angles. Corresponding angles are congruent. 1. 2. 3. 4. 5. 6. 7. 8. Angle 1 and Angle 5 are congruent angles.

Consecutive Interior Angles Consecutive interior angles are next to each other (on the same side of the transversal) between the lines.

Consecutive Interior Angles Consecutive interior angles are SUPPLEMENTARY. 1. 2. 3. 4. 5. 6. 7. 8. Angle 4 and Angle 6 are supplementary angles. Together their measures = 180°

Demonstrate Your Knowledge Now that you’ve seen what is congruent, you can take the measurement of “1” angle and figure out the others. Let’s try it!

WHY?? Angle 2 measures 110°. What do the other angles measure? 1. 2. 3. 4. 5. 6. 7. 8. WHY??

Answers 70° 110° 110° 70° 70° 110° 70° 110°