Ultra-light carbon fiber structures: evaporative tests

Slides:



Advertisements
Similar presentations
Nathan N. Lafferty, Martin L. deBertodano,
Advertisements

122 Nov GTK Microchannel Cooling Hydraulic simulation with Rectangular Manifold Enrico Da Riva, Vinod Rao CERN (EN/CV/DC) 22 th Nov 2011 E. Da Riva,
1 Single-cycle mixed-fluid LNG (PRICO) process Part I: Optimal design Sigurd Skogestad & Jørgen Bauck Jensen Quatar, January 2009.
PRR TRD COOLING A. Marín (GSI) 7/01/2004 ALICE PRR TRD COOLING P.Glässel, A.Marín, V.Petracek, J.Stachel, M.R.Stockmeier, J.P.Wessels ALICE PRR TRD COOLING.
GTK WG Meeting April 5 th 2011 Update on Microchannel Cooling - Paolo Petagna 1/15 PH-DT Update on Microchannel Cooling J. Daguin (CERN PH/DT) A. Mapelli.
PM3125 Content of Lectures 1 to 6: Heat transfer: Source of heat
CO2 cooling pressure drop measurements R. Bates, R. French, G. Viehhauser, S. McMahon.
S Temple CLRC1 End-cap Mechanics FDR Cooling Structures Steve Temple, RAL 1 November 2001.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski and M. D. Hageman Woodruff School of Mechanical Engineering Update on Thermal Performance of the Gas- Cooled.
13th April 2005R.Bates, QM Measurements of Barrel and EC HEX R. Bates, M. Olcese, B. Gorski, QM for prototype builds.
Heat Transfer Equations For “thin walled” tubes, A i = A o.
Calorimeter Analysis Tasks, July 2014 Revision B January 22, 2015.
1 VI Single-wall Beam Pipe tests M.OlceseJ.Thadome (with the help of beam pipe group and Michel Bosteels’ cooling group) TMB July 18th 2002.
E. Da Riva/M. Gomez Marzoa1 WG4 Meeting - 18th July 2012 Ultra-light carbon fiber structures: first test campaign Enrico DA RIVA (EN-CV-PJ) Manuel GOMEZ.
20 th June 20111Enrico Da Riva, V. Rao Project Request and Geometry constraints June 20 th 2011 Bdg 298 Enrico Da Riva,Vinod Singh Rao CFD GTK.
So Far: Conservation of Mass and Energy Pressure Drop in Pipes Flow Measurement Instruments Flow Control (Valves) Types of Pumps and Pump Sizing This Week:
July 4 th 20061Moritz Kuhn (TS/CV/DC/CFD) CERN July 4 th 2006 Moritz Kuhn Cooling of the P326 Gigatracker silicon pixel detector (SPIBES) CFD – Cooling.
Update on UT cooling specifications and status of activities LHCb CO2 cooling meeting 8/7/2015 Simone Coelli For the Milano UT group INFN milano 1 Istituto.
Pipe Design: Minimum Inner Diameter calculation
Full Scale Thermosyphon Design Parameters and Technical Description Jose Botelho Direito EN/CV/DC 19 November, th Thermosyphon Workshop.
Chapter 10 Vapor and Combined Power Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus.
M. Gomez Marzoa1 13th December 2012 PSB-Dump: first CFD simulations Enrico DA RIVA Manuel GOMEZ MARZOA 13 th December 2012.
Overview WG4 Meeting - 16th October 20121M. Gomez Marzoa, E. Da Riva Maximum ΔT admissible at cooling system T_1 T_2 T_1+0.5*ΔT Stave  If T_2 – T_1 =
Detector cooling system Update on UT cooling specifications and status of activities LHCb CO2 cooling meeting Simone Coelli For the Milano UT Group INFN.
1 Monophase Measurements on Prototype Pixel Structures D. Bintinger, M. Gilchriese, J. Taylor and J. Wirth and contributions from D. Cragg, E. Perrin and.
Heat Transfer Equations For “thin walled” tubes, A i = A o.
Simple CFD Estimate of End Flange Tuner Finger Cooling.
M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA.
Update on Micro Channel Cooling Collaboration Meeting , G. Nüßle.
Jan. 28, 2014W. Bertl, PSI BPIX Cooling Status W. Bertl, PSI.
Report on testing Snake2 u-channel. P. Jalocha & J. Buytaert. 8 June 2015.
Multi-Microhannel Cooling Model Silicon Micro-Cooling Element to be applied on a pixel detector of CERN (ALICE) / Parametric Study Footprint area: (6.0.
E. Da Riva/M. Gomez Marzoa1 CFD Weekly Meeting - 3rd June 2012 ITS Upgrade: Cooling progress Enrico DA RIVA (EN-CV-PJ) Manuel GOMEZ MARZOA (EN-CV-PJ) 3.
E. Da Riva1 ITS Upgrade - Air cooling Layers Geometry Change!
E. Da Riva/M. Gomez Marzoa1 WG4 Meeting - 27th June 2012 Air Cooling by means of carbon fiber structure Enrico DA RIVA (EN-CV-PJ) Manuel GOMEZ MARZOA (EN-CV-PJ)
Cooling of GEM detector CFD _GEM 2012/03/06 E. Da RivaCFD _GEM1.
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Design of the thermosiphon Test Facilities Thermosiphon Cooling Review A. MORAUX PH Dpt / DT Group CERN SEPTEMBER.
Aachen Status Report: CO 2 Cooling for the CMS Tracker at SLHC Lutz Feld, Waclaw Karpinski, Jennifer Merz and Michael Wlochal RWTH Aachen University, 1.
Heat Transfer by Convection
7 February 2012 Annekathrin Frankenberger (HEPHY Vienna) Open CO 2 Cooling System at the beam test Belle II SVD-PXD Meeting.
Chapter 10: Flows, Pumps, and Piping Design
Stave thermal analysis Cooling connections CO2 warm Test
For the CMS Pixel detector
Feedback on transfer line sizing and flow calculations for UT
Design of the thermosiphon Test Facilities 2nd Thermosiphon Workshop
Introduction to Food Engineering
Conservation of Mass and Energy
For the CMS Pixel detector
Update on WG4 A.Tauro - R.Santoro 11/10/11 ITS upgrade meeting.
Aachen Status Report: CO2 Cooling for the CMS Tracker
ALICE PD group meeting Andrea Francescon.
Corrado GARGIULO (CERN) Claudio BORTOLIN (CERN)
Microfluidic devices for thermal management
CFD-Team Weekly Meeting - 8th March 2012
Aachen Status Report: CO2 Cooling for the CMS Tracker at SLHC
Progress at the large scale CO2 system,
update on UT cooling system
ES 211: Thermodynamics Tutorial 5 & 6
WG4 – Progress report R. Santoro and A. Tauro.
Detector Technology Group
Recirculating CO2 System
Working with Phases and Properties of Substances
Condensers.
Members of project: Christian Brosch Andreas Maier Tamara Bubeck
Aachen Status Report: CO2 Cooling for the CMS Tracker
Università di Udine / INFN – PD / CERN
Heat-transfer Equipment
CF testing pipe & testing plan
PANDA Collaboration Meeting
For the CMS Pixel detector
Presentation transcript:

Ultra-light carbon fiber structures: evaporative tests Claudio BORTOLIN (CERN) Martin DOUBEK (CTU, Czech Technical University, Prague) Andrea FRANCESCON (CERN) Manuel GOMEZ MARZOA (CERN) Romualdo SANTORO (CERN) 4th September 2012 M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

ALICE Cooling Meeting - 4th September 2012 Contents Heater analysis NTCs vs. thermographic picture analysis Single-phase water tests: D08 prototype Evaporative tests: D08 prototype Comparison with water single-phase tests Temperature distribution Conclusion Prototype and test facility optimization M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

Heater power distribution analysis The D06 prototype with single-phase water tests: presented at WG4 Meeting the 27th July 2012 Two warmer regions were seen towards the centre of the stave at the sides. Possible causes: Lack of thermal contact plate-heater Manufacturing difficulties Gluing defects Heater power dissipation maldistribution? 8 L min-1, 0.5 W cm-2 A single heater and the D04 prototype heater will be powered up: Check temperature distribution Deviation of measurements thermocamera/NTCs M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

Heater power distribution analysis I [A] V [V] P [W] Case: Single heater ΔT-3* [°C] ΔT-2* [°C] ΔT-1* [°C] 0.15 4.2 0.63 -0.1 -0.7 -0.5 0.25 7.4 1.85 -1.6 -2.7 0.35 11.2 3.92 -7.0 1.3 3 2 1 3 2 1 3 2 1 *ΔT-n = Average_T_NTC – Average_T_ThermoPic M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

Heater power distribution analysis I [A] V [V] P [W] Case: D04 heater ΔT-3* [°C] ΔT-2* [°C] ΔT-1* [°C] 0.15 4.4 0.66 -2.0 -0.4 -0.5 0.25 7.4 1.85 -1.8 -0.7 0.35 10.6 3.71 -1.6 -1.0 -0.8 3 2 1 3 2 1 3 2 1 *ΔT-n = Average_T_NTC – Average_T_ThermoPic M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

D08 prototype: description Pipe OD [mm] 1.5 Pipe thickness [mm] 0.035 Pipe ID [mm] 1.43 Carbon paper sleeve thickness tcs [mm] 0.03 CF tangential coverage β [deg] ~ 360 Pitch p+w [mm] 7.5 Fiber width w [mm] p [mm] 6 Angle fibers with pipe axis α [deg] 23 IN OUT M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

D08 prototype: water tests Case: D08, 0.3 W cm-2 Q [L h-1] Δp [bar] v [m s-1] TH20 [°C] ΔTH20 [°C] ΔTHeater [°C] 3.0 0.19 0.52 15.1 2.4 9.8 5.0 0.25 0.86 14.8 1.5 9.0 8.0 0.46 1.38 14.7 0.7 12.0 0.74 2.08 0.6 6.8 Case: D04, 0.31 W cm-2 0.13 2.9 12.2 4.9 0.22 0.85 1.9 8.1 0.38 1.40 14.6 1.2 10.8 12.3 0.76 2.13 14.5 0.8 M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

D08 prototype: water tests Case: D08, 0.5 W cm-2 Q [L h-1] Δp [bar] v [m s-1] TH20 [°C] ΔTH20 [°C] ΔTHeater [°C] 8.0 0.43 1.38 14.7 1.5 16.0 12.0 0.76 2.08 14.8 0.6 13.5 Temperature along stave: D08, 8 L min-1, 0.3 W cm-2 Assuming same power density across stave, D08 performs better than D04 Cannot cool at 0.5 W cm-2 and needs optimization M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

Water tests: conclusion M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

ALICE Cooling Meeting - 4th September 2012 D08 2-phase C4F10 tests @DSF Inlet vapor quality: 𝑥= 𝑚 𝑉𝑎𝑝𝑜𝑟 𝑚 𝐿𝑖𝑞 = ℎ 2 − ℎ 𝐿𝑖𝑞 𝑆𝑎𝑡 ​ 𝑝 2 ℎ 𝑉𝑎𝑝 𝑆𝑎𝑡 ​ 𝑝 2 − ℎ 𝐿𝑖𝑞 𝑆𝑎𝑡 ​ 𝑝 2 Superheating at stave outlet: Δ 𝑇 𝑆𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 𝑇 4 − 𝑇 3 ′ T = const x = const Mass flow rate calculation: 𝑚 = 𝑄 𝐿 Δ 𝑥 2−3 1 𝑄 = 𝑚 𝐿 Δ 𝑥 2−3 ; p [bar] where L is latent heat [kJ kg-1]: 3 𝐿= ℎ 𝑉𝑎𝑝 𝑆𝑎𝑡 − ℎ 𝐿𝑖𝑞 𝑆𝑎𝑡 3’ 2 4 Usually: Qstave [W] Δ 𝑥 𝐸𝑣𝑎𝑝 <0.5 0.2< 𝑥 𝐸𝑣𝑎𝑝 𝐼𝑛 <0.3 h [kJ kg-1] 0.8< 𝑥 𝐷𝑟𝑦𝑜𝑢𝑡 <0.9 M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

D08: water vs. C4F10 @0.3 W cm-2 Water C4F10 Q [L h-1] ΔpSt [bar] v [m s-1] TH20 [°C] ΔTH20 [°C] ΔTHeater [°C] 3.0 0.19 0.52 15.1 2.4 9.8 5.0 0.25 0.86 14.8 1.5 9.0 8.0 0.46 1.38 14.7 0.7 12.0 0.74 2.08 0.6 6.8 C4F10 m [g s-1] xIn xOut TC4F10-Out [°C] 0.16 0.06 0.08 0.92 16.8 0.20 0.07 0.75 14.0 5.5 0.40 0.42 13.4 5.6 0.60 0.2 0.31 6.0 Evaporative cooling system performs as good as single-phase water M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

ALICE Cooling Meeting - 4th September 2012 D08: water vs. C4F10 @0.5 W cm-2 Water Q [L h-1] ΔpSt [bar] v [m s-1] TH20 [°C] ΔTH20 [°C] ΔTHeater [°C] 8.0 0.43 1.38 14.7 1.5 16.0 12.0 0.76 2.08 14.8 0.6 13.5 C4F10 m [g s-1] xIn xOut ΔTSH [°C] 0.4 0.17 0.06 0.65 13.4 13.0 0.26 0.05 0.46 14.0 0.8 0.33 0.03 0.36 14.5 Good selection of mass flow rates and agreement between thermographic pictures and NTCs over the heater. Knowing the vapor quality at the outlet is very important. M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

ALICE Cooling Meeting - 4th September 2012 D08: C4F10 tests discussion Two cases did not perform as expected: Case: 0.3 W cm-2 m [g s-1] ΔpSt [bar] xIn [m s-1] xOut TC4F10-Out [°C] ΔTHeater [°C] 0.8 0.28 0.04 0.26 13.3 14.0 Low vapor quality at the stave entrance: saturated liquid entering stave? Low vapor quality at stave outlet: single phase flow? Case: 0.5 W cm-2 m [g s-1] ΔpSt [bar] xIn [m s-1] xOut TC4F10-Out [°C] ΔTHeater [°C] 0.2 0.09 0.08 1.20 21 28.0 Low vapor quality at the stave entrance: saturated liquid entering stave? Mass flow rate too low: superheated vapor at stave outlet M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

HTC wall-fluid [W m-2 K-1] Conclusion Almost the same cooling performance is achieved with single-phase water cooling circuit as when using evaporative C4F10 for the same prototype. There is not a big increase of the HTC wall-fluid using evaporative C4F10 ΔT wall-water: through the HTC, establishes the margin of improvement by using a better cooling system for this setup: C4F10, two-phase: Water, single phase: Q [l/h] V [m s-1 ] Re [-] HTC [W m-1 K-1] 3.00 0.52 653 1650 12.00 2.08 2612 8076 Evaporative C4F10 means HTC wall-fluid [W m-2 K-1] Tmax Silicon [oC] 1646 43.02 5000 39.25 10000 38.22 CFD Simulations M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

ALICE Cooling Meeting - 4th September 2012 Optimization lines Stave optimization: Pipe inner diameter: can be smaller than 1.5 mm (but less contact area!) More rigid piping: PEEK (avoid deformations, pinching, ensure contact) D08 prototype shows no better thermal performance with evaporative flow Improve weak parts of model (thermal contact, gluing…) Structure thermal analysis/simulation helpful Avoid connectors: leaks, extra pressure drop. Proposal: single pipe w/ 180 deg elbow. In/Out connector: select useful pipe diameter. Setup optimization: A by-pass will be added to the circuit in DSF in order to be able to work with smaller mass flow rates (especially microchannel) For this reason, a coriolis flow meter will be moved in DSF Need for subcooled liquid before the flow meter! Sensors calibration (see backup slide). M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

Ultra-light carbon fiber structures: evaporative tests Claudio BORTOLIN (CERN) Martin DOUBEK (CTU, Czech Technical University, Prague) Andrea FRANCESCON (CERN) Manuel GOMEZ MARZOA (CERN) Romualdo SANTORO (CERN) 4th September 2012 M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

ALICE Cooling Meeting - 4th September 2012 Backup D08: C4F10 tests discussion Q [g s-1] Pd Heater [W cm-2] T1 [oC] P1 [bar] Subcool_1 p2 [bar] ∆pLam [bar] Tsat-p2 [°C] xin-stave [-] T3 [oC] p3 [bar] ∆pSt [bar] T3' [°C] Error@3 [°C] Superheating_3 [°C] hOut [kJ kg-1] xout-stave [-] 0.16 0.30 20.2 3.07 9.1 1.80 1.27 13.2 0.08 16.8 1.74 0.06 12.2  - - 99.37 0.92 0.2 20.4 3.10 9.2 1.82 1.28 13.5 14.0 1.75 0.07 12.4 1.6 84.40 0.75 0.50 1.84 1.26 13.8 21.0 0.09 8.6 125.74 1.20 0.4 20.3 3.08 1.81 13.3 13.4 1.0 53.94 0.42 3.06 8.8 1.93 1.13 15.1 1.76 0.17 12.5 0.9 74.71 0.65 0.6 2.87 6.8 1.96 0.91 15.6 43.81 0.31 2.85 6.6 2.02 0.83 16.5 0.05 0.26 0.8 57.59 0.46 2.79 5.9 2.03 0.76 16.6 0.04 0.28 38.75 2.78 5.8 2.11 0.67 17.7 0.03 1.78 0.33 12.8 0.5 49.08 0.36 Where; Subcooling = TSAT@p1 – T1 (entrance of stave). T3’: saturation temperature at p=p3. Used to calculate superheating at the stave outlet (if superheated vapor present). Error in temperature measurement at point 3: calculated as ε = T3-T3’ M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

An estimation of the uncertainty of measurements: Backup An estimation of the uncertainty of measurements: Q [g s-1] Pd Heater [W cm-2] T1 [oC] P1 [bar] Subcool_1 p2 [bar] Tsat-p2 [°C] T3 [oC] p3 [bar] ∆pSt [bar] h3 [kJ kg-1] h3Lsat xSat-p3 [-] T3' [°C] Error@3 [°C] hOut xout-stave [-] 0.16 0.30 20.2 3.07 9.1 1.80 13.2 16.8 1.74 0.06 111 14.92 107 1.04 12.2  - 99.37 0.92 0.2 20.4 3.10 9.2 1.82 13.5 14.0 1.75 0.07 108 15.09 1.01 12.4 1.6 84.40 0.75 0.50 1.84 13.8 21.0 0.09 114 1.08 125.74 1.20 0.4 20.3 3.08 1.81 13.3 13.4 1.0 53.94 0.42 3.06 8.8 1.93 15.1 1.76 0.17 15.26 12.5 0.9 74.71 0.65 0.6 2.87 6.8 1.96 15.6 43.81 0.31 2.85 6.6 2.02 16.5 0.26 0.8 57.59 0.46 2.79 5.9 2.03 16.6 0.28 38.75 2.78 5.8 2.11 17.7 1.78 0.33 15.60 1.00 12.8 0.5 49.08 0.36 At point 3, calculate h for saturated liquid and vapor using p3. With p3 and T3, the point is superheated vapor and h3 can be calculated. If temperature measurement was fine, , and: In the real case, x3 > 1. The deviation is the % of total error resulting frpm measuring p, T and calculating the enthalpies (RefProp). ℎ 𝑉𝑎𝑝 𝑆𝑎𝑡 ​ 𝑝3 = ℎ 3 𝑥= 𝑚 𝑉𝑎𝑝𝑜𝑟 𝑚 𝐿𝑖𝑞 = ℎ 3 − ℎ 𝐿𝑖𝑞 𝑆𝑎𝑡 ​ 𝑝 3 ℎ 𝑉𝑎𝑝 𝑆𝑎𝑡 ​ 𝑝 3 − ℎ 𝐿𝑖𝑞 𝑆𝑎𝑡 ​ 𝑝 3 =1 M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012

An estimation of the uncertainty of measurements: Backup An estimation of the uncertainty of measurements: Q [g s-1] Pd Heater [W cm-2] T1 [oC] P1 [bar] Subcool_1 p2 [bar] Tsat-p2 [°C] T3 [oC] p3 [bar] ∆pSt [bar] h3 [kJ kg-1] h3Lsat xSat-p3 [-] T3' [°C] Error@3 [°C] hOut xout-stave [-] 0.16 0.30 20.2 3.07 9.1 1.80 13.2 16.8 1.74 0.06 111 14.92 107 1.04 12.2  - 99.37 0.92 0.2 20.4 3.10 9.2 1.82 13.5 14.0 1.75 0.07 108 15.09 1.01 12.4 1.6 84.40 0.75 0.50 1.84 13.8 21.0 0.09 114 1.08 125.74 1.20 0.4 20.3 3.08 1.81 13.3 13.4 1.0 53.94 0.42 3.06 8.8 1.93 15.1 1.76 0.17 15.26 12.5 0.9 74.71 0.65 0.6 2.87 6.8 1.96 15.6 43.81 0.31 2.85 6.6 2.02 16.5 0.26 0.8 57.59 0.46 2.79 5.9 2.03 16.6 0.28 38.75 2.78 5.8 2.11 17.7 1.78 0.33 15.60 1.00 12.8 0.5 49.08 0.36 At point 3, vapor quality at the stave outlet (calculated using an energy balance) indicates that the fluid is in the the two-phase region. If that is the case, then: However, a is read instead. The difference remains stable for most of the cases: Calibration systematic error? Incorrect setting of temperature sensors? 𝑇 3 = 𝑇 3 ′ = 𝑇 𝑆𝑎𝑡 @ 𝑝 3 𝑇 3 > 𝑇 3 ′ M. Gomez Marzoa ALICE Cooling Meeting - 4th September 2012