Track Extrapolation/Shower Reconstruction in a Digital HCAL

Slides:



Advertisements
Similar presentations
1 Individual Particle Reconstruction CHEP07, Victoria, September 6, 2007 Norman Graf (SLAC) Steve Magill (ANL)
Advertisements

CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Lauri A. Wendland: Hadronic tau jet reconstruction with particle flow algorithm at CMS, cHarged08, Hadronic tau jet reconstruction with particle.
Henri Videau LLR Ecole polytechnique - IN2P3/CNRSCalor Calorimetry optimised for jets Henri Videau Jean- Claude Brient Laboratoire Leprince-Ringuet.
April 19th, 2010Philippe Doublet (LAL) Hadronic showers in the SiW ECAL (with 2008 FNAL data) Philippe Doublet.
PFA-Enhanced Dual Readout Crystal Calorimetry Stephen Magill - ANL Hans Wenzel - FNAL Outline : Motivation Detector Parameters Use of a PFA in Dual Readout.
Particle Flow Template Modular Particle Flow for the ILC Purity/Efficiency-based PFA PFA Module Reconstruction Jet Reconstruction Stephen Magill Argonne.
P. Gay Energy flow session1 Analytic Energy Flow F. Chandez P. Gay S. Monteil CALICE Coll.
1 Study of the Tail Catcher Muon Tracker (TCMT) Scintillator Strips and Leakage with Simulated Coil Rick Salcido Northern Illinois University For CALICE.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
EF with simple multi-particle states Vishnu V. Zutshi NIU/NICADD.
1 N. Davidson E/p single hadron energy scale check with minimum bias events Jet Note 8 Meeting 15 th May 2007.
Ties Behnke, Vasiliy Morgunov 1SLAC simulation workshop, May 2003 Pflow in SNARK: the next steps Ties Behnke, SLAC and DESY; Vassilly Morgunov, DESY and.
PFA on SiDaug05_np Lei Xia ANL-HEP. PFA outline Calibration of calorimeter –Done –Not tuned for clustering algorithm Clustering algorithm –Done: hit density.
Some early attempts at PFA Dhiman Chakraborty. LCWS05 Some early attempts at PFA Dhiman Chakraborty2 Introduction Primarily interested in exploring the.
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.
LPC Jet/Met meeting 1/12/2006L. Perera1 Jet/Calorimeter Cluster Energy Corrections – Status Goal: To improve the individual jet energy determination based.
Potpourri Vishnu V. Zutshi Northern Illinois University.
PFA Development – Definitions and Preparation 0) Generate some events w/G4 in proper format 1)Check Sampling Fractions ECAL, HCAL separately How? Photons,
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, U.S. LC Calorimeter Group.
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, Brian Musgrave, Norman Graf, U.S. LC Calorimeter Group.
Track Extrapolation/Shower Reconstruction in a Digital HCAL – ANL Approach Steve Magill ANL 1 st step - Track extrapolation thru Cal – substitute for Cal.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
Event Reconstruction in SiD02 with a Dual Readout Calorimeter Detector Geometry EM Calibration Cerenkov/Scintillator Correction Jet Reconstruction Performance.
Simulation Studies for a Digital Hadron Calorimeter Arthur Maciel NIU / NICADD Saint Malo, April 12-15, 2002 Introduction to the DHCal Project Simulation.
PFA Template Concept Performance Mip Track and Interaction Point ID Cluster Pointing Algorithm Single Particle Tests of PFA Algorithms S. Magill ANL.
Development of a Particle Flow Algorithms (PFA) at Argonne Presented by Lei Xia ANL - HEP.
Two Density-based Clustering Algorithms L. Xia (ANL) V. Zutshi (NIU)
UTA GEM DHCAL Simulation Jae Yu * UTA DoE Site Visit Nov. 13, 2003 (*On behalf of the UTA team; A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee,
PFAs – A Critical Look Where Does (my) SiD PFA go Wrong? S. R. Magill ANL ALCPG 10/04/07.
Bangalore, India1 Performance of GLD Detector Bangalore March 9 th -13 th, 2006 T.Yoshioka (ICEPP) on behalf of the.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
Photon reconstruction and matching Prokudin Mikhail.
1 D.Chakraborty – VLCW'06 – 2006/07/21 PFA reconstruction with directed tree clustering Dhiman Chakraborty for the NICADD/NIU software group Vancouver.
Particle-flow Algorithms in America Dhiman Chakraborty N. I. Center for Accelerator & Detector Development for the International Conference.
Particle Flow Review Particle Flow for the ILC (Jet) Energy Resolution Goal PFA Confusion Contribution Detector Optimization with PFAs Future Developments.
Ties Behnke: Event Reconstruction 1Arlington LC workshop, Jan 9-11, 2003 Event Reconstruction Event Reconstruction in the BRAHMS simulation framework:
BESIII EMC Simulation & Reconstruction He Miao
1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital.
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
Calice Meeting Argonne Muon identification with the hadron calorimeter Nicola D’Ascenzo.
Two-particle separation studies with a clustering algorithm for CALICE Chris Ainsley University of Cambridge CALICE (UK) meeting 10 November 2004, UCL.
7/13/2005The 8th ACFA Daegu, Korea 1 T.Yoshioka (ICEPP), M-C.Chang(Tohoku), K.Fujii (KEK), T.Fujikawa (Tohoku), A.Miyamoto (KEK), S.Yamashita.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
ECAL Interaction layer PFA Template Track/CalCluster Association Track extrapolation Mip finding Shower interaction point Shower cluster pointing Shower.
Intelligent Norman Graf, Steve Magill, Steve Kuhlmann, Ron Cassell, Tony Johnson, Jeremy McCormick SLAC & ANL CALOR ‘06 June 9, 2006 DesignDetector.
Status of Reconstruction Studies for a Realistic Detector Ron Cassell SiD Workshop Nov. 15, 2010.
papas: CMS single particle tuning
Jet Energy Scale and Calibration Framework
Predrag Krstonosic - ILC Valencia
Dual Readout Clustering and Jet Finding
CALICE scintillator HCAL
Studies with PandoraPFA
The reconstruction method for GLD PFA
Individual Particle Reconstruction
Update of Electron Identification Performance Based on BDTs
EFA/DHCal development at NIU
Plans for checking hadronic energy
Mokka vs. LCDG4 Comparison
Rick Salcido Northern Illinois University For CALICE Collaboration
Argonne National Laboratory
Detector Optimization using Particle Flow Algorithm
Michele Faucci Giannelli
Performance of BDTs for Electron Identification
Status of CEPC HCAL Optimization Study in Simulation LIU Bing On behalf the CEPC Calorimeter working group.
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Sheraton Waikiki Hotel
Presentation transcript:

Track Extrapolation/Shower Reconstruction in a Digital HCAL Steve Magill ANL Track Extrapolation/Shower Reconstruction in a Digital HCAL E-flow alg. Korea, NIU, Prague 1st step - Track extrapolation thru Cal – substitute for Cal cells in road (core + tuned outlyers) - analog* or digital techniques in HCAL – S. Magill – Cal granularity/segmentation optimized for separation of charged/neutral clusters 2nd step - Photon finder (use analytic long./trans. energy profiles, ECAL shower max, etc.) – S. Kuhlmann 3rd step - Jet Algorithm on tracks and photons - Done 4th step – include remaining Cal cells (neutral hadron energy) in jet (cone?) -> Digital HCAL? * V. Morgunov, CALOR2002

Density-Weighted CAL Cells E-weight : analog cal D-weight : digital cal area ~ 40 cells  red – E fraction for density > 1/40 blue – E fraction outside .04 cone    cell density weight = 3/40 # cells in window

ECAL Interaction Layer 20, Theta, Phi

HCAL Interaction Layer 10, Theta, Phi

Density vs E - ECAL cell energy (GeV) MIP signal – 8 MeV cell density

Density vs E - HCAL MIP signal – 36 MeV what’s this? cell energy (GeV) cell density

Mokka, impact of the gas in HCAL Electrons Pions Gas Scin Gas Scin

HCAL E fraction, Ecell > 1 MIP

HCAL Cell Density Distribution 31% single cell windows mean ~ 4 cells

Seed Cell Distribution (cell density > 1)

Track Extrapolation/Shower Link Algorithm 1. Pick up all seed cells close to extrapolated track - Can tune for optimal seed cell definition - For cone size < 0.1 (~6o), get 85% of energy 2. Add cells in a cone around each seed cell through n layers 3. Linked seed cells in subsequent cones form the reconstructed shower 4. Discard all cells linked to the track

Single 10 GeV Pion : D-weighted event display Gap between ECAL/HCAL Blue – all Red – density > 1 Green – density > 3

Single 10 GeV Pion – event display comparison