Chiral phase transition in magnetic field 毛施君 (Mao Shijun) 西安交通大学(Xi’an Jiaotong University)
QCD Phase Diagram HICs: Compact stars:1010~15 Gauss Early Universe:1024 Gauss Chiral phase transition Deconfinement phase transition
Lattice QCD Chiral phase transition: Tc(B) is an open question. refs: G. Bali, et.al, Phys. Rev. D86, 071502 (2012);
IMC is still an open question. Magnetic Catalysis (MC) is confirmed by mean field calculation in effective models ---- Dimension Reduction (Nucl. Phys. B 462, 249 (1996); 563, 361 (1999)) IMC is still an open question. magnetic inhibition: Fukushima et al., PRL 110, 031601 (2013) contribution from neutral pion (2) mass gap in large Nc limit: Toru et al. , PLB 720, 192 (2013) (3) chirality imbalance: Huang Mei et al. , PRD 88, 054009 (2013) (4) contribution from sea quark (gluon screening effect): Bruckmann et al. , JHEP 04, 112 (2013) (5) weakening of strong coupling: Pinto et al. , PRC 90, 025203 (2014) …… 1. pion properties, 2. feed-down from pions to quarks
NJL model beyond MF SU(2) Nambu--Jona-Lasinio model Idea NJL模型受BCS理论的启发,被广泛用来研究手征对称性(手征凝聚) (2008, Nobel Prize)。 Idea (1)Quarks:mean field (2)Mesons:RPA resummation (quantum fluctuation) (3)Q-M system: feed-down from mesons to quarks
(1) Gap eq. @ mean field order parameter: chiral condensate effective quark mass thermodynamic potential : quark propagator in Ritus form: gap equation:
(2) Mesons (quantum fluctuations) meson propagators @ Random Phase Approximation @ Ritus momentum space pole equation:
Pion mass jump @ Mott temperature pole equation meson mass jump induced by dimension reduction of quarks possible pion enhancement during the cooling of fireball
(3) Gap eq. beyond mean field mesons quark-meson system: meson thermo- dynamic potential: meson energy: transverse velocity: new gap equation:“running”coupling constant G’(B,T)
MC and IMC order parameter low T, m ↑ with B, (MC); G’/G<1, high T, m ↓ with B, (IMC); G’/G<1, meson weakens coupling。 magnetic inhibition
chiral phase transition critical temperature Tc decreases with B;consistent with LQCD Inverse Magnetic Catalysis:
Summary and outlook quantum fluctuations “running” coupling G’(B,T) Inverse magnetic catalysis for chiral phase transition refs: (1) S.J. Mao, Phys. Lett. B 758, 195-199 (2016) (2) S.J. Mao, Phys. Rev. D 94, 036007 (2016) (3) S.J. Mao, Y.X. Wang, PRD accepted, 1702.04868 Outlook: charged meson and condensate; deconfinement phase transition BMF.
Back up
G’(B,T)
π0 mass and transverse velocity meson mass: Goldstone mode transverse (x,y): longitudinal (z) : dimension reduction Mermin-Wagner-Coleman theorem possible IMC
from IMC to MC critical temperature (2nd), @ μq=0 coexistence quark chemical potential (1st), @ T=0
--- Fu Weijie talk in Yichang
chiral and deconfinement phase transition PNJL
Theoretical framework 1. Quark level:solving gap equation with mean field ,mmf 2. Mesons(quantum fluctuations) 3. Feed-down from mesons to quarks: ---- beyond mean field gap eq,mbmf However, (1)G is constant; (3)Running G’(B,T) From eq(1), B ↑,m ↑; G ↑,m ↑; Mesons
meson mass under eB --- MAO, WANG, arXiv:1702.04868 model parameters Pauli-Villars
numerical results model parameters @Pauli-Villars regularization
quark propagator under external magnetic field ---- Ritus propagator Ritus momentum refs: Ann. Phys. 69, 555 (1972); Nucl. Phys. B747, 266 (2006);Ann. Phys. 295, 33 (2002) .
charged boson propagator (Ritus) under eB refs: Ann. Phys. 69, 555 (1972); Nucl. Phys. B747, 266 (2006); Ann. Phys. 295, 33 (2002) . polarization functions
Lattice QCD Chiral phase transition: Tc(B) is an open question. refs: G. Bali, et.al, Phys. Rev. D86, 071502 (2012);D’Elia et. Al, Phys. Rev. D83, 114028(2011)