Chapter 14 Functions.

Slides:



Advertisements
Similar presentations
Chapter 14 Functions. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Function Smaller, simpler, subcomponent.
Advertisements

Run-time Environment for a Program different logical parts of a program during execution stack – automatically allocated variables (local variables, subdivided.
CSI 3120, Implementing subprograms, page 1 Implementing subprograms The environment in block-structured languages The structure of the activation stack.
Procedures in more detail. CMPE12cGabriel Hugh Elkaim 2 Why use procedures? –Code reuse –More readable code –Less code Microprocessors (and assembly languages)
Computer Architecture CSCE 350
CSS 372 Lecture 1 Course Overview: CSS 372 Web page Syllabus Lab Ettiquette Lab Report Format Review of CSS 371: Simple Computer Architecture Traps Interrupts.
Chapter 17 Recursion. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Mathematical Definition: RunningSum(1)
1 Function Calls Professor Jennifer Rexford COS 217 Reading: Chapter 4 of “Programming From the Ground Up” (available online from the course Web site)
CS 536 Spring Code generation I Lecture 20.
Chapter 11-14, Appendix D C Programs Higher Level languages Compilers C programming Converting C to Machine Code C Compiler for LC-3 Please return breadboards.
1 Introduction to “C” Control Loops and Functions Patt and Patel Ch. 13 & 14.
Run time vs. Compile time
RapUp Dynamic Allocation of Memory in C Last HW Exercise Review for Final Final Exam Next Thursday – Same Time / Same Place.
Overview C programming Environment C Global Variables C Local Variables Memory Map for a C Function C Activation Records Example Compilation.
CS 201 Functions Debzani Deb.
Digression: the “Stack” 1 CS502 Spring 2006 Digression: the “Stack” Imagine the following program:– int factorial(int n){ if (n
Chapter 10 Implementing Subprograms. Copyright © 2007 Addison-Wesley. All rights reserved. 1–2 Semantics of Call and Return The subprogram call and return.
TCSS 372A Computer Architecture. Getting Started Get acquainted (take pictures) Review Web Page (
C Stack Frames / Pointer variables Stack: Local Variables Pass & Return values Frame Ptr linkage (R5) and PC linkage (R7) Pointer Variables: Defining &
Stacks and Frames Demystified CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han.
Chapter 8 :: Subroutines and Control Abstraction
Chapter 14 Functions. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Function Smaller, simpler, subcomponent.
CMPE13Cyrus Bazeghi Chapter 14 Functions in C. CMPE13 2 Functions Smaller, simpler, subcomponents of programs Provide abstraction –hide low-level details.
Functions & Activation Records Recursion
Chapter 17 Pointers and Arrays. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Pointers and Arrays.
Compiler Construction
Chapter 14 Functions.
1 Control Abstraction (Section ) CSCI 431 Programming Languages Fall 2003 A compilation of material developed by Felix Hernandez-Campos and Michael.
COP4020 Programming Languages Subroutines and Parameter Passing Prof. Xin Yuan.
Runtime Organization (Chapter 6) 1 Course Overview PART I: overview material 1Introduction 2Language processors (tombstone diagrams, bootstrapping) 3Architecture.
CSC 8505 Compiler Construction Runtime Environments.
Functions. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9-2 JSR Instruction Jumps to a location (like.
Chapter 14 Functions. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Declarations (aka prototype) int.
4-1 Embedded Systems C Programming Language Review and Dissection II Lecture 4.
RUNTIME ENVIRONMENT AND VARIABLE BINDINGS How to manage local variables.
LECTURE 19 Subroutines and Parameter Passing. ABSTRACTION Recall: Abstraction is the process by which we can hide larger or more complex code fragments.
Code Generation Instruction Selection Higher level instruction -> Low level instruction Register Allocation Which register to assign to hold which items?
Implementing Subprograms
Section 5: Procedures & Stacks
Chapter 14 Functions.
Computer Architecture & Operations I
Storage Classes There are three places in memory where data may be placed: In Data section declared with .data in assembly language in C - Static) On the.
Run-Time Environments Chapter 7
Implementing Subprograms Chapter 10
Chapter 17 Recursion.
Implementing Subprograms
Chapter 12 Variables and Operators
Chapter 9 :: Subroutines and Control Abstraction
Implementing Subprograms
Chapter 14 Functions.
More C Stack Frames / Pointer variables
Chapter 17 Recursion.
Chap. 8 :: Subroutines and Control Abstraction
Chap. 8 :: Subroutines and Control Abstraction
Procedures – Overview Lecture 19 Mon, Mar 28, 2005.
CSC 533: Programming Languages Spring 2015
Understanding Program Address Space
Chapter 14 Functions.
Topic 3-a Calling Convention 1/10/2019.
Chapter 17 Recursion.
Where is all the knowledge we lost with information? T. S. Eliot
CSC 533: Programming Languages Spring 2018
CSC 533: Programming Languages Spring 2019
Chapter 14 Functions.
Implementing Subprograms
Return-to-libc Attacks
Chapter 17 Recursion.
Chapter 14 Functions.
Implementing Functions: Overview
Presentation transcript:

Chapter 14 Functions

Function Smaller, simpler, subcomponent of program Provides abstraction hide low-level details give high-level structure to program, easier to understand overall program flow enables separable, independent development C functions zero or multiple arguments passed in single result returned (optional) return value is always a particular type In other languages, called procedures, subroutines, ...

Example of High-Level Structure main() { SetupBoard(); /* place pieces on board */ DetermineSides(); /* choose black/white */ /* Play game */ do { WhitesTurn(); BlacksTurn(); } while (NoOutcomeYet()); } Structure of program is evident, even without knowing implementation.

3. use return value in expression Functions in C Declaration (also called prototype) int Factorial(int n); Function call -- used in expression a = x + Factorial(f + g); type of return value name of function types of all arguments 1. evaluate arguments 2, execute function 3. use return value in expression

gives control back to calling function and returns value Function Definition State type, name, types of arguments must match function declaration give name to each argument (doesn't have to match declaration) int Factorial(int n) { int i; int result = 1; for (i = 1; i <= n; i++) result *= i; return result; } gives control back to calling function and returns value

Why Declaration? Since function definition also includes return and argument types, why is declaration needed? Use might be seen before definition. Compiler needs to know return and arg types and number of arguments. Definition might be in a different file, written by a different programmer. include a "header" file with function declarations only compile separately, link together to make executable

Example declaration function call (invocation) definition double ValueInDollars(double amount, double rate); main() { ... dollars = ValueInDollars(francs, DOLLARS_PER_FRANC); printf("%f francs equals %f dollars.\n", francs, dollars); ... } double ValueInDollars(double amount, double rate) { return amount * rate; declaration function call (invocation) definition

Implementing Functions: Overview Activation record information about each function, including arguments and local variables stored on run-time stack Calling function Called function push new activation record copy values into arguments call function execute code put result in activation record pop activation record from stack return get result from stack

Run-Time Stack Recall that local variables are stored on the run-time stack in an activation record Frame pointer (R5) points to the beginning of a region of activation record that stores local variables for the current function When a new function is called, its activation record is pushed on the stack; when it returns, its activation record is popped off of the stack.

Run-Time Stack Before call During call After call Memory Memory Memory Watt R6 R6 R5 R5 main main main Before call During call After call

Activation Record int NoName(int a, int b) { int w, x, y; . . . return y; } y x w dynamic link return address return value a b locals R5 bookkeeping args Name Type Offset Scope a b w x y int 4 5 -1 -2 NoName

Activation Record Bookkeeping Return value space for value returned by function allocated even if function does not return a value Return address save pointer to next instruction in calling function convenient location to store R7 in case another function (JSR) is called Dynamic link caller’s frame pointer used to pop this activation record from stack

Example Function Call int Volta(int q, int r) { int k; int m; ... return k; } int Watt(int a) { int w; ... w = Volta(w,10); ... return w; }

Calling the Function w = Volta(w, 10); 25 10 q r w dyn link ret addr ret val a w = Volta(w, 10); ; push second arg AND R0, R0, #0 ADD R0, R0, #10 ADD R6, R6, #-1 STR R0, R6, #0 ; push first argument LDR R0, R5, #0 ADD R6, R6, #-1 STR R0, R6, #0 ; call subroutine JSR Volta new R6 R6 R5 xFD00 Note: Caller needs to know number and type of arguments, doesn't know about local variables.

Starting the Callee Function xFCFB x3100 25 10 m k dyn link ret addr ret val q r w a ; leave space for return value ADD R6, R6, #-1 ; push return address ADD R6, R6, #-1 STR R7, R6, #0 ; push dyn link (caller’s frame ptr) ADD R6, R6, #-1 STR R5, R6, #0 ; set new frame pointer ADD R5, R6, #-1 ; allocate space for locals ADD R6, R6, #-2 new R6 new R5 R6 R5 xFD00

Ending the Callee Function -43 217 xFCFB x3100 25 10 m k dyn link ret addr ret val q r w a return k; ; copy k into return value LDR R0, R5, #0 STR R0, R5, #3 ; pop local variables ADD R6, R5, #1 ; pop dynamic link (into R5) LDR R5, R6, #0 ADD R6, R6, #1 ; pop return addr (into R7) LDR R7, R6, #0 ADD R6, R6, #1 ; return control to caller RET R6 R5 new R6 new R5 xFD00

Resuming the Caller Function 217 25 10 ret val q r w dyn link ret addr a w = Volta(w,10); JSR Volta ; load return value (top of stack) LDR R0, R6, #0 ; perform assignment STR R0, R5, #0 ; pop return value ADD R6, R6, #1 ; pop arguments ADD R6, R6, #2 R6 new R6 R5 xFD00

Summary of LC-3 Function Call Implementation Caller pushes arguments (last to first). Caller invokes subroutine (JSR). Callee allocates return value, pushes R7 and R5. Callee allocates space for local variables. Callee executes function code. Callee stores result into return value slot. Callee pops local vars, pops R5, pops R7. Callee returns (JMP R7). Caller loads return value and pops arguments. Caller resumes computation…