Rotational Inertia.

Slides:



Advertisements
Similar presentations
CH 10: Rotation.
Advertisements

Rotational Inertia. Circular Motion  Objects in circular motion have kinetic energy. K = ½ m v 2  The velocity can be converted to angular quantities.
Moment of Inertia. Moment of Inertia Defined  The moment of inertia measures the resistance to a change in rotation. Change in rotation from torqueChange.
L24-s1,8 Physics 114 – Lecture 24 §8.5 Rotational Dynamics Now the physics of rotation Using Newton’s 2 nd Law, with a = r α gives F = m a = m r α τ =
Physics 207: Lecture 16, Pg 1 Lecture 16Goals: Chapter 12 Chapter 12  Extend the particle model to rigid-bodies  Understand the equilibrium of an extended.
Physics 111: Mechanics Lecture 09
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Phy 211: General Physics I Chapter 10: Rotation Lecture Notes.
Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Rotational Dynamics l Today’s lecture will cover Textbook Sections : è Quick review of last.
Lecture 34, Page 1 Physics 2211 Spring 2005 © 2005 Dr. Bill Holm Physics 2211: Lecture 34 l Rotational Kinematics çAnalogy with one-dimensional kinematics.
Rigid Bodies Rigid Body = Extended body that moves as a unit Internal forces maintain body shape Mass Shape (Internal forces keep constant) Volume Center.
Physics 151: Lecture 20, Pg 1 Physics 151: Lecture 20 Today’s Agenda l Topics (Chapter 10) : çRotational KinematicsCh çRotational Energy Ch
Rotational Energy. Rigid Body  Real objects have mass at points other than the center of mass.  Each point in an object can be measured from an origin.
Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 557, A29
Physics 1A, Section 2 November 15, Translation / Rotation translational motionrotational motion position x angular position  velocity v = dx/dt.
Physics 106: Mechanics Lecture 02
Semester Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 560, A29
Physics 111: Elementary Mechanics – Lecture 9 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
College of Physics Science & Technology YANGZHOU UNIVERSITYCHINA Chapter 11ROTATION 11.1 The Motion of Rigid Bodies Rigid bodies A rigid body is.
Torque & Rotational Inertia Lecturer: Professor Stephen T. Thornton.
Rotation Rotational Variables Angular Vectors Linear and Angular Variables Rotational Kinetic Energy Rotational Inertia Parallel Axis Theorem Newton’s.
11 rotation The rotational variables Relating the linear and angular variables Kinetic energy of rotation and rotational inertia Torque, Newton’s second.
Example Problem The parallel axis theorem provides a useful way to calculate I about an arbitrary axis. The theorem states that I = Icm + Mh2, where Icm.
Two-Dimensional Rotational Kinematics 8.01 W09D1 Young and Freedman: 1.10 (Vector Products) , 10.5.
Chapter 11: Rotational Dynamics  As we did for linear (or translational) motion, we studied kinematics (motion without regard to the cause) and then dynamics.
Physics 1501: Lecture 19, Pg 1 Physics 1501: Lecture 19 Today’s Agenda l Announcements çHW#7: due Oct. 21 l Midterm 1: average = 45 % … l Topics çRotational.
Rigid Body Particle Object without extent Point in space Solid body with small dimensions.
Rotational kinematics and energetics
Physics.
Rotational Inertia By: Russell and Malachi Brown and Zachary Beene.
Physics 111: Lecture 17, Pg 1 Physics 111: Lecture 17 Today’s Agenda l Rotational Kinematics çAnalogy with one-dimensional kinematics l Kinetic energy.
Sect. 10.4: Rotational Kinetic Energy
Rotation of a body about an axisRIGID n FIXED Every point of body moves in a circle Not fluids,. Every point is constrained and fixed relative to all.
4.1 Rotational kinematics 4.2 Moment of inertia 4.3 Parallel axis theorem 4.4 Angular momentum and rotational energy CHAPTER 4: ROTATIONAL MOTION.
1 Rotation of a Rigid Body Readings: Chapter How can we characterize the acceleration during rotation? - translational acceleration and - angular.
Rotation of a Rigid Object About a Fixed Axis 10.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
-Angular and Linear Quantities -Rotational Kinetic Energy -Moment of Inertia AP Physics C Mrs. Coyle.
Theoretical Mechanics DYNAMICS * Navigation: Right (Down) arrow – next slide Left (Up) arrow – previous slide Esc – Exit Notes and Recommendations:
STROUD Worked examples and exercises are in the text Programme 21: Integration applications 3 INTEGRATION APPLICATIONS 3 PROGRAMME 21.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Worked examples and exercises are in the text STROUD PROGRAMME 20 INTEGRATION APPLICATIONS 3.
1 7. Rotational motion In pure rotation every point of an object moves in a circle whose center lies on the axis of rotation (in translational motion the.
7. Rotational motion In pure rotation every point of an object moves in a circle whose center lies on the axis of rotation (in translational motion the.
Topic : Moment of Inertia
-Calculation of Moments of Inertia for Rigid Objects of Different Geometries -Parallel Axis Theorem AP Physics C Mrs. Coyle.
PHYS 1443 – Section 003 Lecture #18
Rolling Motion. Rolling Motion Rolling Motion If we separate the rotational motion from the linear motion, we find that speed of a point on the outer.
Unit 7 - Rotational Mechanics
General Physics I Rotational Motion
Rotational Inertia & Kinetic Energy
Physics 201 Lecture 9 Torque and Rotation.
Honors Physics 1 Class 12 Fall 2013
Wednesday: Review session
Figure 10.16  A particle rotating in a circle under the influence of a tangential force Ft. A force Fr in the radial direction also must be present to.
Lecture 17 Goals Relate and use angle, angular velocity & angular acceleration Identify vectors associated with angular motion Introduce Rotational Inertia.
Spring 2002 Lecture #15 Dr. Jaehoon Yu Mid-term Results
Chapter 10:Rotation of a rigid object about a fixed axis
Remember Newton’s 2nd Law?
Chapter 9: Rotational Motion
Rotational Equilibrium and Dynamics
Lecture 17 Goals: Chapter 12
Two-Dimensional Rotational Kinematics 8.01 W09D1
Two-Dimensional Rotational Kinematics W09D1 Young and Freedman: 1
Physics 111 Practice Problem Solutions 09 Rotation, Moment of Inertia SJ 8th Ed.: Chap 10.1 – 10.5 Contents 11-4, 11-7, 11-8, 11-10, 11-17*, 11-22, 11-24,
Finding the Moment of Inertia using calculus
Rotational Motion.
Physics 3 – Aug 31, 2017 P3 Challenge –
Moment of Inertia.
Remember Newton’s 2nd Law?
Presentation transcript:

Rotational Inertia

Rigid Body Real objects have mass at points other than the center of mass. Each point in an object can be measured from an origin at the center of mass. If the positions are fixed compared to the center of mass it is a rigid body. ri

Translation and Rotation The motion of a rigid body includes the motion of its center of mass. This is translational motion A rigid body can also move while its center of mass is fixed. This is rotational motion. vCM 

Circular Motion Objects in circular motion have kinetic energy. K = ½ m v2 The velocity can be converted to angular quantities. K = ½ m (r w)2 K = ½ (m r2) w2 m r w

Integrated Mass The kinetic energy is due to the kinetic energy of the individual pieces. The form is similar to linear kinetic energy. KCM = ½ m v2 Krot = ½ I w2 The term I is the moment of inertia of a particle.

Moment of Inertia Defined The moment of inertia measures the resistance to a change in rotation. Mass measures resistance to change in velocity Moment of inertia I = mr2 for a single mass The total moment of inertia is due to the sum of masses at a distance from the axis of rotation.

Two Spheres A spun baton has a moment of inertia due to each separate mass. I = mr2 + mr2 = 2mr2 If it spins around one end, only the far mass counts. I = m(2r)2 = 4mr2 m m r

Mass at a Radius Extended objects can be treated as a sum of small masses. A straight rod (M) is a set of identical masses Dm. The total moment of inertia is Each mass element contributes The sum becomes an integral distance r to r+Dr length L axis

Rigid Body Rotation The moments of inertia for many shapes can found by integration. Ring or hollow cylinder: I = MR2 Solid cylinder: I = (1/2) MR2 Hollow sphere: I = (2/3) MR2 Solid sphere: I = (2/5) MR2

Point and Ring The point mass, ring and hollow cylinder all have the same moment of inertia. I = MR2 All the mass is equally far away from the axis. The rod and rectangular plate also have the same moment of inertia. I = (1/3) MR2 The distribution of mass from the axis is the same. M R R M M M length R length R axis

Parallel Axis Theorem Some objects don’t rotate about the axis at the center of mass. The moment of inertia depends on the distance between axes. The moment of inertia for a rod about its center of mass: h = R/2 M axis

Spinning Energy How much energy is stored in the spinning earth? The earth spins about its axis. The moment of inertia for a sphere: I = 2/5 M R2 The kinetic energy for the earth: Krot = 1/5 M R2 w2 With values: K = 2.56 x 1029 J The energy is equivalent to about 10,000 times the solar energy received in one year.