Growth Hormone (GH, Somatotropin)

Slides:



Advertisements
Similar presentations
Endocrine Control Chapter 32.
Advertisements

Long-term Complications of Type 2 Diabetes
CLINICAL CHEMISTRY (MLT 301) CARBOHYDRATE LECTURE ONE
Chapter 5 Hormonal Responses to Exercise
THE ENDOCRINE PANCREAS: Located partially behind the stomach, the pancreas is a mixed gland composed of both endocrine and exocrine cells. Located partially.
Hormonal control and responses
Control of blood sugar levels By: Jake Baird and Nick Mulligan.
Homeostatic Control of Metabolism
Physiological role of insulin Release of insulin by beta cells –Response to elevated blood glucose level –Effects of insulin Somewhat global Major effects.
PANCREATIC HORMONES Dr. Amel Eassawi 1. OBJECTIVES The student should be able to:  Know the cell types associated with the endocrine pancreas.  Discuss.
Biological effects of GH Somatotropic –Growth and cell proliferation IGF-I mediated Metabolic –Direct action of GH IGF-I independent Many tissues All nutrients.
Endocrine Physiology PANCREAS Dr. Meg-angela Christi M. Amores.
Hormones and the regulation of blood glucose
Absorptive (fed) state
ENDOCRINE SYSTEM: Controlling Blood Sugar. Pancreas and Blood Sugar The pancreas has two types of cells:
Hormonal regulation of carbohydrate metabolism
A and P II Glucose Metabolism. 120 grams of glucose / day = 480 calories.
The Endocrine System Aims: Must be able to outline the main components of the endocrine system and their roles. Should be able to explain how hormones.
Endocrine Block Glucose Homeostasis Dr. Usman Ghani.
Anterior Pituitary Hormones. Physiological functions of growth hormone Growth hormone promotes growth of many body tissues. GH,also called somatotropic.
Small protein expressed from anterior lobe of pituitary produced by Somatotroph cells of the anterior pituitary Growth hormone (hGH) is a peptide hormone.
Pancreas Pancreas is a glandular organ located beneath the stomach in the abdominal cavity. Connected to the small intestine at the duodenum. Functions.
Growth Hormone Victoria Brown.
Energy Requirements Living tissue is maintained by constant expenditure of energy (ATP). ATP is Indirectly generated from –glucose, fatty acids, ketones,
Glucose Homeostasis By Dr. Sumbul Fatma.
Endocrine Physiology The Endocrine Pancreas. A triangular gland, which has both exocrine and endocrine cells, located behind the stomach Strategic location.
The Endocrine System Chapter 15. Hormones Secreted by endocrine glands, endocrine cells, and certain neurons Travel through the bloodstream to nonadjacent.
The Pancreas.
Glucagon and somatostatin
Dr. Hany Ahmed Assistant Professor of Physiology (MD, PhD) Al Maarefa Colleges (KSA) & Zagazig University (Egypt) Specialist of Diabetes, Metabolism and.
Hormones of the Pancreas The bulk of the pancreas is an exocrine gland secreting pancreatic fluid into the duodenum after a meal. Endocrine pancreas Scattered.
Endocrine System Lecture 3 Pancreatic gland and its hormones Asso. Professor Dr Than Kyaw 24 September 2012.
GLUCAGON. Glucagon: is secreted when “Glucose is GONE” Peptide hormone made of 29 amino acids. MW: 3485 Has several functions that are dramatically opposite.
Videos Stress response Adrenaline. Chapter 15 Section 15.3 Hormones that Affect Metabolism.
Lesson Overview Lesson Overview The Endocrine System Lesson Overview 34.1 The Endocrine System.
Endocrine System (part 2) Keri Muma Bio 6. Pancreas Located behind the stomach Has both exocrine and endocrine functions.
Chapter 5: Hormonal Responses to Exercise EXERCISE PHYSIOLOGY Theory and Application to Fitness and Performance, 5 th edition Scott K. Powers & Edward.
Endocrine System Final
Endocrine Block Glucose Homeostasis Dr. Usman Ghani.
Unit 1 Lesson 6 Activity 3- Insulin and the Human Body
Glucagon – A hormone from pancreas Lecture NO:1st BDS
PHYSIOLOGY OF THE ENDOCRINE SYSTEM
Hormones that affect metabolism: Thyroid Gland
Endocrine System.
The Endocrine System.
Integration of Metabolism
The Endocrine Pancreas
Insulin - A hormone from Pancreas Lecture NO : 02nd MBBS
Glucose Homeostasis By Dr. Sumbul Fatma.
Endocrine Control of Growth and Metabolism
Nikki Delgado and Joy Hochstetler
Information I’ll assume that you know:
The Endocrine System.
GROWTH & METABOLISM Part 2 – Hormonal Regulation
Parathyroid Hormone and Vitamin D: Control of Blood Calcium
Anatomy & Physiology II
Plasma Glucose Homeostasis
A or alpha cells, secrete glucagon. B or beta cells, secrete insulin. The pancreas is a two different organs contained within one structure:-  Exocrine.
Chapter 31 Endocrine Control.
Insulin and Glucagon Kamilah Gonzalez.
relies on release of chemical that bind to specific receptors
GROWTH HORMONE Victoria Brown. Structure of hormone  191 amino acids long  Protein structure  4 helices that help it bind its receptor  2 strong sulfide.
Endocrine System Endocrine System maintains: Homeostasis, controls growth, development, reproduction, and metabolism by releasing different hormones.
The Endocrine System.
Integration of Metabolism
Insulin and Glucagon Dr. Noori M. Luaibi.
Endocrine System Anatomy and Physiology
Hormones and the Endocrine System
Glucagon – A hormone from pancreas Lecture NO: 2nd MBBS
The Endocrine Pancreas
Presentation transcript:

Growth Hormone (GH, Somatotropin) Growth hormone is a protein hormone of about 190 amino acids that is synthesized and secreted by cells called somatotrophs in the anterior pituitary. It is a major participant in control of several complex physiologic processes, including growth and metabolism. Growth hormone is also of considerable interest as a drug used in both humans and animals.

Biochemical Effects of Growth Hormone Direct effects are the result of growth hormone binding its receptor on target cells. Fat cells (adipocytes), for example, have growth hormone receptors, and growth hormone stimulates them to break down triglyceride and supresses their ability to take up and accumulate circulating lipids. Indirect effects are mediated primarily by a insulin-like growth factor-I (IGF-I), a hormone that is secreted from the liver and other tissues in response to growth hormone. A majority of the growth promoting effects of growth hormone is actually due to IGF-I acting on its target cells.

Growth Hormone Effects on Growth Growth is a very complex process, and requires the coordinated action of several hormones. The major role of growth hormone in stimulating body growth is to stimulate the liver and other tissues to secrete IGF-I. IGF-I stimulates proliferation of chondrocytes (cartilage cells), resulting in bone growth. Growth hormone does seem to have a direct effect on bone growth in stimulating differentiation of chondrocytes. IGF-I also appears to be the key player in muscle growth. It stimulates both the differentiation and proliferation of myoblasts. It also stimulates amino acid uptake and protein synthesis in muscle and other tissues. Metabolic Effects GH has important effects on protein, lipid and carbohydrate metabolism. In some cases, a direct effect of growth hormone has been clearly demonstrated, in others, IGF-I is thought to be the critical mediator, and some cases it appears that both direct and indirect effects are at play. Protein metabolism: In general, GH stimulates protein anabolism in many tissues. This effect reflects increased amino acid uptake, increased protein synthesis and decreased oxidation of proteins. Fat metabolism: GH enhances the utilization of fat by stimulating triglyceride breakdown and oxidation in adipocytes. Carbohydrate metabolism: GH is one of a battery of hormones that serves to maintain blood glucose within a normal range. Growth hormone is often said to have anti-insulin activity, because it supresses the abilities of insulin to stimulate uptake of glucose in peripheral tissues and enhance glucose synthesis in the liver. Somewhat paradoxically, administration of growth hormone stimulates insulin secretion, leading to hyperinsulinemia.

Control of Growth Hormone Secretion Production of growth hormone is modulated by many factors, including stress, exercise, nutrition, sleep and growth hormone itself. However, its primary controllers are two hypothalamic hormones and one hormone from the stomach: Growth hormone-releasing hormone (GHRH) is a hypothalamic peptide that stimulates both the synthesis and secretion of growth hormone. Somatostatin (SS) is a peptide produced by several tissues in the body, including the hypothalamus. Somatostatin inhibits GH release in response to GHRH and to other stimulatory factors such as low blood glucose concentration. Ghrelin is a peptide hormone secreted from the stomach. Ghrelin binds to receptors on somatotrophs and potently stimulates secretion of GH. GH secretion is also part of a negative feedback loop involving IGF-I. High blood levels of IGF- I lead to decreased secretion of growth hormone not only by directly suppressing the somatotroph, but by stimulating release of somatostatin from the hypothalamus. GH also feeds back to inhibit GHRH secretion Integration of all the factors that affect growth hormone synthesis and secretion lead to a pulsatile pattern of release. Basal concentrations of growth hormone in blood are very low.

Disease States Giantism is the result of excessive growth hormone secretion that begins in young children or adolescents. Acromegaly results from excessive secretion of growth hormone in adults, usually the result of benign pituitary tumors.

The Endocrine Pancreas: Insulin and Glucagon The pancreas houses two distinctly different tissues. The bulk of its mass is exocrine tissue and associated ducts, which produce an alkaline fluid loaded with digestive enzymes which is delivered to the small intestine to facilitate digestion of foodstuffs. On the other hand, endocrine cells produce the hormones insulin and glucagon. Insulin and glucagon are critical participants in glucose homeostasis and serve as acute regulators of blood glucose concentration. From a medical perspective, insulin in particular is enormously important - a deficiency in insulin or deficits in insulin responsiveness lead to the disease diabetes mellitus.

Insulin and Carbohydrate Metabolism Glucose is liberated from dietary carbohydrate such as starch or sucrose by hydrolysis within the small intestine, and is then absorbed into the blood. Elevated concentrations of glucose in blood stimulate release of insulin, and insulin acts on cells thoughout the body to stimulate uptake, utilization and storage of glucose. The effects of insulin on glucose metabolism vary depending on the target tissue. Two important effects are: Insulin facilitates entry of glucose into muscle, adipose and several other tissues. The only mechanism by which cells can take up glucose is by facilitated diffusion through a family of hexose transporters. In many tissues - muscle being a prime example - the major transporter used for uptake of glucose (called GLUT4) is made available in the plasma membrane through the action of insulin. When insulin concentrations are low, GLUT4 glucose transporters are present in cytoplasmic vesicles, where they are useless for transporting glucose. Binding of insulin to receptors on such cells leads rapidly to fusion of those vesicles with the plasma membrane and insertion of the glucose transporters, thereby giving the cell an ability to efficiently take up glucose. When blood levels of insulin decrease and insulin receptors are no longer occupied, the glucose transporters are recycled back into the cytoplasm.

Insulin Insulin stimulates the liver to store glucose in the form of glycogen. Insulin has several effects in liver which stimulate glycogen synthesis. It activates the enzyme hexokinase, which phosphorylates glucose, trapping it within the cell. Coincidently, insulin acts to inhibit the activity of glucose-6-phosphatase. Insulin also activates several of the enzymes that are directly involved in glycogen synthesis, including phosphofructokinase and glycogen synthase. A well-known effect of insulin is to decrease the concentration of glucose in blood, which should make sense considering the mechanisms described above. Another important consideration is that, as blood glucose concentrations fall, insulin secretion ceases. In the absense of insulin, a bulk of the cells in the body become unable to take up glucose, and begin a switch to using alternative fuels like fatty acids for energy. Neurons, however, require a constant supply of glucose, which in the short term, is provided from glycogen reserves. When insulin levels in blood fall, glycogen synthesis in the liver diminishes and enzymes responsible for breakdown of glycogen become active. Glycogen breakdown is stimulated not only by the absense of insulin but by the presence of glucagon, which is secreted when blood glucose levels fall below the normal range.

Insulin and Lipid Metabolism Insulin promotes synthesis of fatty acids in the liver. As discussed above, insulin is stimulatory to synthesis of glycogen in the liver. However, as glycogen accumulates to high levels (roughly 5% of liver mass), further synthesis is strongly suppressed. When the liver is saturated with glycogen, any additional glucose taken up by hepatocytes is shunted into pathways leading to synthesis of fatty acids, which are exported from the liver as lipoproteins. The lipoproteins are ripped apart in the circulation, providing free fatty acids for use in other tissues, including adipocytes, which use them to synthesize triglyceride. Insulin inhibits breakdown of fat in adipose tissue by inhibiting the intracellular lipase that hydrolyzes triglycerides to release fatty acids. Insulin facilitates entry of glucose into adipocytes, and within those cells, glucose can be used to synthesize glycerol. This glycerol, along with the fatty acids delivered from the liver, are used to synthesize triglyceride within the adipocyte. By these mechanisms, insulin is involved in further accumulation of triglyceride in fat cells. From a whole body perspective, insulin has a fat-sparing effect. Not only does it drive most cells to preferentially oxidize carbohydrates instead of fatty acids for energy, insulin indirectly stimulates accumulation of fat in adipose tissue.

Other Notable Effects of Insulin In addition to insulin's effect on entry of glucose into cells, it also stimulates the uptake of amino acids, again contributing to its overall anabolic effect. When insulin levels are low, as in the fasting state, the balance is pushed toward intracellular protein degradation. Insulin also increases the permiability of many cells to potassium, magnesium and phosphate ions. The effect on potassium is clinically important. Insulin activates sodium- potassium ATPases in many cells, causing a flux of potassium into cells. Under certain circumstances, injection of insulin can kill patients because of its ability to acutely suppress plasma potassium concentrations.

Glucagon Glucagon has a major role in maintaining normal concentrations of glucose in blood, and is often described as having the opposite effect of insulin. That is, glucagon has the effect of increasing blood glucose levels. Glucagon is synthesized as proglucagon and proteolytically processed to yield glucagon within alpha cells of the pancreatic islets. Glucagon stimulates breakdown of glycogen stored in the liver. When blood glucose levels are high, large amounts of glucose are taken up by the liver. Under the influence of insulin, much of this glucose is stored in the form of glycogen. Later, when blood glucose levels begin to fall, glucagon is secreted and acts on hepatocytes to activate the enzymes that depolymerize glycogen and release glucose. Glucagon activates hepatic gluconeogenesis. Gluconeogenesis is the pathway by which non-hexose substrates such as amino acids are converted to glucose. As such, it provides another source of glucose for blood. This is especially important in animals like cats and sheep that don't absorb much if any glucose from the intestine - in these species, activation of gluconeogenic enzymes is the chief mechanism by which glucagon does its job. Glucagon also appears to have a minor effect of enhancing lipolysis of triglyceride in adipose tissue, which could be viewed as an addition means of conserving blood glucose by providing fatty acid fuel to most cells.

Endocrine Control of Calcium and Phosphate Homeostasis Calcitonin, a protein hormone synthesized and secreted in humans primarily by parafollicular cells (C cells) in the thyroid gland. The overall effect of calcitonin is to lower the concentration of calcium in the blood when it rises above the normal value. It also lowers the concentration of phosphorus in the blood when levels exceed normal. Parathormone: The parathyroid glands secrete a hormone called parathormone (PTH), which is a polypeptide. PTH, regulates calcium metabolism in conjunction with calcitonin. In general, the action of parathormone is opposite in direction to that of calcitonin. Parathormone keeps the level of blood calcium up to its normal value; on the other hand, calcitonin ensures, through its hypocalcemic action, that the level does not rise far above this critical point. The combined actions of the two hormones serve to illustrate the importance of endocrine regulation in homeostasis.

Vitamin D Vitamin D acts to increase blood concentrations of calcium. It is generated through the activity of parathyroid hormone within the kidney. Far and away the most important effect of vitamin D is to facilitate absorption of calcium from the small intestine. In concert with parathyroid hormone, vitamin D also enhances fluxes of calcium out of bone.