2018-09-15 Fatigue life of thermal barrier coatings (TBCs) – physically based modeling Sten Johansson, Håkan Brodin, Robert Eriksson, Sören Sjöström, Lars.

Slides:



Advertisements
Similar presentations
Nitriding Team Nitriding
Advertisements

AeroMat 2004 June 10, 2004 Ralph Tapphorn and Don Ulmer David Grimmett, Boeing-Rocketdyne Linus Thomas-Ogbuji, NASA-GRC AeroMat 2004 June 10, 2004 Ralph.
Ryan Kraft, and Rajiv Asthana, University of Wisconsin-Stout
1 MEGAPIE Structural Materials : Is there a risk of failure? MEGAPIE Workshop Aix-en Provence, Nov MEGAPIE Structural Materials Is there a risk of.
EN Division-Metallurgy and Metrology
LECTURER5 Fracture Brittle Fracture Ductile Fracture Fatigue Fracture
EFFECT OF DESIGN FACTORS ON THERMAL FATIGUE CRACKING OF DIE CASTING DIES John F. Wallace David Schwam Sebastian Birceanu Case Western Reserve University.
CHE 333 Class 20 Fracture continued.
Linköping University Sören Sjöström IEI, Solid Mechanics.
Modelling of self-healing thermal barrier coatings Background Thermal Barrier Coating (TBC) systems are applied in gas turbine engines used for propulsion.
Thermal Spray Powders. Special Capabilities / Powder Mfg. Gas atomization –MCrAlYs, metal alloys, superalloys & braze powders Sintering –Carbide and ceramic.
Be/FS joining for ITER TBM Ryan Matthew Hunt FNST Meeting August 18, 2009 A collaboration between UCLA, SNL-Livermore, Brush-Wellman, Axsys Inc. and Bodycote.
Fundamentals of Metal Forming Chapter 18
Basic Mechanisms of Fracture in Metals
Cr and Co release reduction from stainless steels in PWR and BWR 2009 ISOE Asia ALARA Symposium Aomori EPRI Radiation Protection Conference September 9,
S. Terashima and H. K. D. H. Bhadeshia
Bradley Allison Advisor: Prof. Rodney Trice Effects of Starting Powder Size on Sintering of YSZ Thermal Barrier Coatings REU Presentation August 5, 2004.
In-Situ Observation of Crack Behavior in Plasma-Sprayed 7 wt% Yttria-Stabilized Zirconia Jonathan Levin Purdue University Advisor: Prof. Trice.
Dependence of Fracture Toughness of Ceramic Thermal Barrier Coatings on Microstructure: Electron Beam Physical Vapor Deposition vs. Air Plasma Spray Project.
LECTURER6 Factors Affecting Mechanical Properties
A Review of the 7 th International Tooling Conference PRESENTED BY: Century Sun Metal Treating, Inc. Mark Baleja, Lab Manager.
Effect of thermo-chemical parameters on the adhesion of scale layer Technical University of Czestochowa, The Department of Industrial Furnaces and Environmental.
Uncertainties in Thermal Barrier Coating Life Prediction by Karl A. Mentz A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute.
Plasma Arc Lamp Operation
Rolling Contact Fatigue of Hot Isostatic Pressed WC-NiCrBSi Thermal Spray Coatings S. Stewart Supervisor : Dr R. Ahmed.
T.M.F.T: Thermal Mechanical Fatigue Testing
Alodine ® EC 2 General Characteristics: Coating based on Ti electrodeposited oxides from the electrically assisted hydrolysis of metal complexes. Coating.
T.M.F.T: Thermal Mechanical Fatigue Testing Wale Adewole Siyé Baker Heriberto Cortes Wesley Hawk Ashley McKnight.
Tribo-Mechanical Evaluations of HIPed Thermal Spray Cermet Coatings V. StoicaHeriot-Watt University, UK Rehan Ahmed Heriot Watt University, UK T. ItsukaichiFujimi.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY 1 Tungsten Armored Ferritic Steel Glenn Romanoski & Lance Snead June 2004.
Comparison of HIP and VPS Tungsten Coating Behavior Using Laser Spallation Jaafar El-Awady with significant contributions from H. Kim, J. Quan, S. Sharafat,
SPACEPORT ENGINEERING & TECHNOLOGY National Aeronautics and Space Administration John F. Kennedy Space Center Analysis of Residual Stress and Fracture.
Study of the Sn-Zn-X alloys for solder applications in the electronic industry Study of the Sn-Zn-X alloys for solder applications in the electronic industry.
Chemical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH Nanoscale Ni/NiO films for electrode and electrochemical Devices.
MECHANICAL ENGINEERING,
4 th International Conference and Exhibition on Materials Science & Engineering Florida, Orlando, USA, September 14-16, 2015 A. K. Gujba, L. Hackel, D.
Performance of W/Cu FGM in edge plasma of HT-7 tokamak Zhu Dahuan Liu yang Chen Junling Institute of plasma physics, Chinese Academic of Science, China.
The tungsten/F82H sample was impinged at 6 different locations with 6 different laser fluence energies to determine the critical energy that would result.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Corrosion Investigations of Steels in Pb-Bi at FZK J. Konys, G. Müller, J. Knebel Materials -
Fabrication of Dual Layer Ni/Ni-YSZ Hollow Fibers for Anode Support via Phase Inversion and Sintering Method Krzysztof Kanawka, Nicolas Droushiotis, Zhentao.
Byron Williams – BAE Systems
Keith Legg Plasma spray ID coatings HCAT Program Review August 2001 Toronto.
Study of heat and chemical treatments effects on the surface of ultra-precision machined discs for CLIC X-band Accelerating Structure Review (24 Nov. 2014)
EBC’s for Energy Efficient Heat Engines. DOE/Energy Efficient Science Program under Cooperative Agreement DE-FC20-01CH11086-A000 Presented at EBC’s for.
Factors Affecting Tool Life In Machining Processes
Thermal Spray Coatings Asst.Prof.Dr. Ali Sabea Hammood Materials Engineering Department Materials Engineering Department Faculty of Engineering Faculty.
Project meeting , Geneva
Fatigue • Fatigue = failure under cyclic stress.
SPRAYING OF A WC-12Co CGS LAYER OVER A WC-Co HVOF COATING
MECHANICAL PROPERTIES OF WC-25/17/12Co CERMETS SPRAYED BY HVOF AND CGS
Heat Treatment of Steel
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ
Information on Be properties
Inspection of Thermal Spray Coatings
Opportunities in Film Cooling
Date of download: 1/6/2018 Copyright © ASME. All rights reserved.
732A30 Master’s thesis Department of Computer and Information Science (IDA) Linköpings universitet Sweden Detta är en mall för att göra PowerPoint presentationer.
Microstructure & Performance of Joints in High Temperature Alloys
CHE 333 Class 20 Fracture continued.
Lecture 5 732G21/732G28/732A35 Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din.
Program Structure Business & Economics Program May 2016
A new approach to strengthen grain boundaries for creep
Mechanical Properties: 2
FATIGUE FATIGUE Dr. Mohammed Abdulrazzaq
Heat Treatment of Metals
The Thermal Annealing Effect on The Residual Stress and Mechanical Property in The Compressive stressed DLC Film H. W. Choi, M. -W. Moon, T. -Y. Kim2,
Manufacture of Alloy Powder
Surface Engineering By Israa Faisal University of Al-Qadisiyah
Biomedical Engineering - Project Course TBMT14
Oxygen content in PM HIP its effect on toughness
Presentation transcript:

2018-09-15 Fatigue life of thermal barrier coatings (TBCs) – physically based modeling Sten Johansson, Håkan Brodin, Robert Eriksson, Sören Sjöström, Lars Östergren, Xin-Hai Li Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik, namn osv på sid 1. Börja sedan skriva in din text på sid 2. För att skapa nya sidor, tryck Ctrl+M. Sidan 3 anger placering av bilder och grafik. Titta gärna på ”Baspresentation 2008” för exempel. Den sista bilden är en avslutningsbild som visar LiUs logotype och webadress. Om du vill ha fast datum, eller ändra författarnamn, gå in under Visa, Sidhuvud och Sidfot. Linköpings universitet

Introduction

The components of a TBC system BC 150-300 µm, TC 300-1500 µm top coat (TC), zirconia + 6–8% yttria bond coat (BC), MCrAlY M = Ni or Ni + Co Substrate, Ni-base (Haynes 230, Hastelloy X) light optic micrograph of TBC

plasma spraying, image from Sulzer Metco Manufacturing of TBC Raw material (powder) is fed into a plasma flame. The coatings are built up by droplets, forming a splat-on-splat structure on impact. Plasma spraying can be done in: air (APS) or vacuum (VPS). plasma spraying, image from Sulzer Metco

oxidation / corrosion / fatigue Problems with TBC if combustion temperature is increased, or when new fuel types are used oxidation / corrosion / fatigue Fatigue needs to develop life models for thick TBC needs to include effect of corrosion in life models More severe oxidation Sulphur in fuel might form sulphides Salts might cause rapid oxidation damaged oxide in TBC damaged top coat in TBC

Problem description Reliability of TBCs must improve! stresses the need for more robust life models that takes into account: oxidation, corrosion, BC/TC interface morphology, coating thickness, different types of thermal cycling How to accomplish this? Physically based fracture mechanical models

Experimental work: Surface roughness

interface morphology It influences: grayscale image It influences: adhesion stress distribution in BC/TC interface How to model the surface roughness? binary image surface profile filtered profile model

correlation between Ra and TCF life length Results Correlation between Ra and life length. Interface morphology influences fatigue life correlation between Ra and TCF life length from Fracture mechanical modelling of a plasma sprayed TBC system, Brodin et al.

experimental work: Adhesion of heat treated thermal barrier coatings

Isothermal and cyclic heat treatments isothermal oxidation 1100°C continuous high temperature exposure thermal cycling fatigue 1100°C 1 h in furnace => 10 min cooling to ~100°C burner rig test ~1100°C 75 s heating => 75 s cooling

Microstructural degradation Al depletion of the bond coat is one of the mechanisms that limits life of TBCs β-depletion in heat treated bond coat, a) BRT 300 cyc. b) BRT 1150 cyc. c) isoth. ox. 1 h d) isoth. ox. 23 h

Microstructural degradation formation of bulky oxide cluster in TCF-subjected specimen Bulky cluster of oxides formed in the interface may act as crack initiation sites.

Fracture surfaces from adhesion test By gluing the TBC coated specimens to two rods, the adhesion of the TBC can be tested using a tensile machine 3 18.4 MPa 1 19.7 MPa 2 20.9 MPa Fracture surfaces from adhesion test

Changes in adhesion with heat treatment type and treatment length changes in adhesion with high temperature exposure Cross-sectioned fracture surfaces from adhesion test, 300 cycles TCF Burner rig testing gives lower adhesion, but slower decrease in adhesion per cycle. Isothermal oxidation is beneficial.

Fractography, fracture in top coat Failure occurs between splats in the top coat fractured TC, as-sprayed specimen

fracture in top coat Through-splat cracks are rare. Mostly occur in pre-existing cracks splat-on-splat nucleation fractured TC, as-sprayed specimen fractured TC, as-sprayed specimen

High temperature exposure: grain coarsening a) as-sprayed, b) isothermal oxidation ~300 h, c) burner rig test 1150 cycles, d) thermal cycling fatigue 300 cycles

High temperature exposure: sintering cross-sections showing sintering a) as-sprayed b) isothermally oxidised 300 h fracture surfaces showing in-splat sintering a) as-sprayed b) isothermal oxidation ~300 h c) burner rig, 1150 cycles d) thermal cycling fatigue, 300 cycles

Fracture in BC/TC interface Increase in amount of interface fracture due to fatigue damage. Furnace cycled specimens have cracked oxide layer and cut-through oxide clusters. black fracture: a) as-sprayed, b) 300 cycles of thermal cycling fatigue, c) 300 cycles of burner rig test, d) 1150 cycles of burner rig test

Fracture in BC/TC interface: revealed oxide layer Al2O3 BC Al2O3 BC Cr-rich / spinel Al2O3 TC TCF 300 cycles (Al,Cr)2O3 / (Ni,Co)(Al,Cr)2O4 BC

Fracture in BC/TC interface: revealed oxide layer Al2O3 NiO BC Cr-rich / spinel TC TCF 300 cycles Cut-through oxide clusters Usually cracks during thermal cycling NiO Cr-rich/ spinel

Modelling work: influence of chamfer angle on edge cracking

Basic failure mechanisms Spallation from flat surfaces Spallation from convex surfaces 3. Spallation at sharp edges Substrate

Edge effects: effect of end chamfering TC BC substrate TGO x z TBC chamfer angle Substrate end angle  (2) equivalent ’fatigue evaluation’ stress Surprising conclusion: Practically no improvement until  (1) is made < 60 º

Ongoing experimental work: Oxidation study and corrosion testing

Corrosion rig Corrosion cycle: spraying with Na2SO4+NaCl 1 h in furnace, 650–950 °C cooling in air, reaching a minimum temperature of ~100 °C Currently running corrosion on BC coated specimen, SL30 NiCoCrAlY+Si

www.liu.se