Mrs. Rivas Ch 4 Test Review 1.

Slides:



Advertisements
Similar presentations
Write equation or Describe Transformation. Write the effect on the graph of the parent function down 1 unit1 2 3 Stretch by a factor of 2 right 1 unit.
Advertisements

MM2A3c Investigate and explain characteristics of quadratic function, including domain, range, vertex, axis of symmetry, zeros, intercepts, extrema, intervals.
Solving Quadratic Equations by Graphing
6.1 Solving Quadratic Equations by Graphing Need Graph Paper!!!
Completing the square Solving quadratic equations 1. Express the followings in completed square form and hence solve the equations x 2 + 4x – 12 = 0 (x.
Name:__________ warm-up 9-5 R Use a table of values to graph y = x 2 + 2x – 1. State the domain and range. What are the coordinates of the vertex of the.
Anatomy of a Quadratic Function. Quadratic Form Any function that can be written in the form Ax 2 +Bx+C where a is not equal to zero. You have already.
Properties of Graphs of Quadratic Functions
Radical/Power Functions Radicals Complex Numbers Quadratic Functions
Algebra 2 Honors Quadratic Functions.
Quadratic Functions Objectives: Graph a Quadratic Function using Transformations Identify the Vertex and Axis of Symmetry of a Quadratic Function Graph.
Section 5.1 Introduction to Quadratic Functions. Quadratic Function A quadratic function is any function that can be written in the form f(x) = ax² +
200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300.
JEOPARDY! Graphing Quadratics Graphing Solving using Square Roots Discriminants GO TO FINAL.
Warmup 9-11 Solve the following equations by factoring. Show work! 1.x x - 80 = 0 2.Solve by using the quadratic formula: 4x 2 - 5x - 2 = 0 3.Solve.
Definitions 4/23/2017 Quadratic Equation in standard form is viewed as, ax2 + bx + c = 0, where a ≠ 0 Parabola is a u-shaped graph.
Chapter 9.1 Notes. Quadratic Function – An equation of the form ax 2 + bx + c, where a is not equal to 0. Parabola – The graph of a quadratic function.
4.1 Quadratic Functions and Transformations A parabola is the graph of a quadratic function, which you can write in the form f(x) = ax 2 + bx + c, where.
$200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400.
Unit 1 part 2 Test Review Graphing Quadratics in Standard and Vertex Form.
4.1 – 4.3 Review. Sketch a graph of the quadratic. y = -(x + 3) Find: Vertex (-3, 5) Axis of symmetry x = -3 y - intercept (0, -4) x - intercepts.
Sample Problems for Class Review
Fri 12/11 Lesson 4 – 1 Learning Objective: To graph quadratic functions Hw: Graphing Parabolas Day 1 WS.
Graphing quadratic functions part 2. X Y I y = 3x² - 6x + 2 You have to find the vertex before you can graph this function Use the formula -b 2a a = 3.
M2 Unit 1B: Day 7 MM2A4 Students will solve quadratic equations and inequalities in two variables. MM2A4b Find real and complex solutions of equations.
CHAPTER 10 LESSON OBJECTIVES. Objectives 10.1 Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum.
Solving Quadratics Algebra 2 Chapter 3 Algebra 2 Chapter 3.
9.1: GRAPHING QUADRATICS ALGEBRA 1. OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form.
WS Practice 4-7 Mrs. Rivas Ida S. Baker H.S. Solve each equation using the Quadratic Formula.
Factor each polynomial.
Graphing Quadratic Functions Solving by: Factoring
Mrs. Rivas Objective: To find the x and y intercepts.
Algebra 1 Final Exam Review
Quadratic Functions, Quadratic Expressions, Quadratic Equations
Do-Now What is the general form of an absolute value function?
Mrs. Rivas
Warm Up /05/17 1. Evaluate x2 + 5x for x = -4 and x = 3. __; ___
Warm Up /31/17 1. Evaluate x2 + 5x for x = 4 and x = –3. __; ___
Mrs. Rivas
Quadratic Equations Chapter 5.
Mrs. Rivas
4.1 Quadratic Functions and Transformations
Warm-Up Find the x and y intercepts: 1. f(x) = (x-4)2-1
Y Label each of the components of the parabola A: ________________ B: ________________ C: ________________ C B B 1 2.
$$$ DEAL OR NO DEAL $$$.
SECTION 9-3 : SOLVING QUADRATIC EQUATIONS
Solving Quadratic Equation by Graphing
**Get signed by your parents for 5 bonus points on the test!!
Final Review Day 2 Algebra 1.
Unit 12 Review.
Quadratics in Vertex Form
Chapter 15 Review Quadratic Functions.
Review Chapter 6 Standard & Honors
Graphing Quadratic Functions
Chapter 15 Review Quadratic Functions.
Quadratic Functions The graph of a quadratic function is called a parabola. The parent function is given as This is the parent graph of all quadratic functions.
Section 9.1 Day 4 Graphing Quadratic Functions
“P. Sherman, 42 Wallaby Way, Sydney!”
Section 9.5 Day 1 Solving Quadratic Equations by using the Quadratic Formula Algebra 1.
“P. Sherman, 42 Wallaby Way, Sydney!”
Obj: graph parabolas in two forms
4.1 Notes – Graph Quadratic Functions in Standard Form
Jigsaw Review: 4.1 to 4.3 Friday, Nov. 20, 2009
Warm Up #4 1. Write 15x2 + 6x = 14x2 – 12 in standard form. ANSWER
Algebra 2 – Chapter 6 Review
Warm Up.
Quadratic Equation Day 4
L5-7 Objective: Students will be able to solve quadratics by using the quadratic formula.
Quadratic Functions and Their Properties
QUADRATIC FUNCTION PARABOLA.
Presentation transcript:

Mrs. Rivas Ch 4 Test Review 1. 𝑦=2(𝑥+2)²−3 𝒊𝒇𝒙=−𝟏, 𝒚=𝟐 −𝟏+𝟐 𝟐 −𝟑=−𝟏 Ida S. Baker H.S. Ch 4 Test Review (4-1) Graph the following functions; and identify the vertex, the axis of symmetry, the maximum or minimum value and the domain and range and describe the transformation of the graph of 𝑦=𝑥² to your graph. 𝒊𝒇𝒙=−𝟏, 𝒚=𝟐 −𝟏+𝟐 𝟐 −𝟑=−𝟏 (-1, -1) 1. 𝑦=2(𝑥+2)²−3 Vertex: (-2, -3) Axis: x = -2 Min: y = -3 Domain: all real numbers Range: all real numbers ≥−𝟑 Transformation: moved 2 units left and 3 units down.

Mrs. Rivas Ch 4 Test Review 2. 𝑦=−2(𝑥−2)²−4 𝒊𝒇𝒙=𝟏, 𝒚=−𝟐 𝟏−𝟐 𝟐 −𝟒=−𝟔 Ida S. Baker H.S. Ch 4 Test Review (4-1) Graph the following functions; and identify the vertex, the axis of symmetry, the maximum or minimum value and the domain and range and describe the transformation of the graph of 𝑦=𝑥² to your graph. 𝒊𝒇𝒙=𝟏, 𝒚=−𝟐 𝟏−𝟐 𝟐 −𝟒=−𝟔 (1, - 6) 2. 𝑦=−2(𝑥−2)²−4 Vertex: (2, -4) Axis: x = 2 Max: y = -4 Domain: all real numbers Range: all real numbers ≤−𝟒 Transformation: Reflected over the x-axis, and moved 2 units right and 4 units down.

Mrs. Rivas Ch 4 Test Review 𝒙= −𝒃 𝟐𝒂 𝒚=𝒙²−𝟐𝒙+𝟖 𝒚=(𝟏)²−𝟐(𝟏)+𝟖 Ida S. Baker H.S. Ch 4 Test Review (4-2)What is the vertex form of the equation? 𝑥= −𝑏 2𝑎 3. 𝑦=𝑥²−2𝑥+8 𝒙= −𝒃 𝟐𝒂 𝒚=𝒙²−𝟐𝒙+𝟖 a: 1 b: -2 𝒚=(𝟏)²−𝟐(𝟏)+𝟖 𝒙= −(−𝟐) 𝟐(𝟏) 𝒚=𝟏−𝟐+𝟖 𝒚=𝟕 𝒙= 𝟐 𝟐 𝒚= 𝒙−𝟏 +𝟕 𝒙=𝟏

Mrs. Rivas Ch 4 Test Review 𝒙= −𝒃 𝟐𝒂 𝒚=−𝒙²−𝟐𝒙+𝟖 𝒚=−(𝟏)²−𝟐(𝟏)+𝟖 Ida S. Baker H.S. Ch 4 Test Review (4-2)What is the vertex form of the equation? 𝑥= −𝑏 2𝑎 4. 𝑦=− 𝑥 2 +2𝑥−8 𝒙= −𝒃 𝟐𝒂 𝒚=−𝒙²−𝟐𝒙+𝟖 a: -1 b: 2 𝒚=−(𝟏)²−𝟐(𝟏)+𝟖 𝒙= −(𝟐) 𝟐(−𝟏) 𝒚=−𝟏−𝟐+𝟖 𝒙= −𝟐 −𝟐 𝒚=𝟓 𝒚= 𝒙−𝟏 +𝟓 𝒙=𝟏

Mrs. Rivas Ch 4 Test Review 𝟔𝒙 𝒙 +𝟖 𝟖𝒙 𝒙 + 𝟔 𝟔𝒙+𝟖𝒙=𝟏𝟒𝒙 𝒙+𝟖 𝒙+𝟔 Ida S. Baker H.S. Ch 4 Test Review (4-4)What is the expression in factored form? 5. 𝑥²+14𝑥+48 𝒙 𝟐 +𝟏𝟒𝒙+𝟒𝟖 𝟔𝒙 𝒙 +𝟖 𝟖𝒙 𝒙 + 𝟔 𝟔𝒙+𝟖𝒙=𝟏𝟒𝒙 𝒙+𝟖 𝒙+𝟔

Mrs. Rivas Ch 4 Test Review − 𝒙 𝟐 +𝒙−𝟒𝟐 𝟑𝒙 𝒙 +𝟕 −𝟔𝒙 𝒙 −𝟔 −𝟔𝒙+𝟕𝒙=𝒙 Ida S. Baker H.S. Ch 4 Test Review (4-4)What is the expression in factored form? 6. − 𝑥 2 −𝑥+42 − 𝒙 𝟐 +𝒙−𝟒𝟐 𝟑𝒙 𝒙 +𝟕 −𝟔𝒙 𝒙 −𝟔 −𝟔𝒙+𝟕𝒙=𝒙 − 𝒙+𝟕 𝒙−𝟔

Mrs. Rivas Ch 4 Test Review 𝟖𝒙(𝟐𝒙+𝟏) 7. 16𝑥²+8𝑥 Ida S. Baker H.S. Ch 4 Test Review (4-4)What is the expression in factored form? 7. 16𝑥²+8𝑥 Since c = 0 we have to factor out. 𝟖𝒙(𝟐𝒙+𝟏)

Mrs. Rivas Ch 4 Test Review 𝟏𝟎𝒙 𝟔𝒙 𝟐𝒙 +𝟔 𝒙 + 𝟓 𝟏𝟎𝒙+𝟔𝒙=𝟏𝟔𝒙 𝟐𝒙+𝟔 𝒙+𝟓 Ida S. Baker H.S. Ch 4 Test Review (4-4)What is the expression in factored form? 8. 2𝑥²+16𝑥+30 𝟐𝒙 𝟐 +𝟏𝟔𝒙+𝟑𝟎 𝟏𝟎𝒙 𝟐𝒙 +𝟔 𝟔𝒙 𝒙 + 𝟓 𝟏𝟎𝒙+𝟔𝒙=𝟏𝟔𝒙 𝟐𝒙+𝟔 𝒙+𝟓

Mrs. Rivas Ch 4 Test Review − 𝟒𝒙 𝟐 −𝟏𝟔𝒙−𝟒𝟖 −𝟐𝟒𝒙 𝟒𝒙 +𝟖 𝟖𝒙 𝒙 −𝟔 Ida S. Baker H.S. Ch 4 Test Review (4-4)What is the expression in factored form? 9. −4𝑥²+16𝑥+48 − 𝟒𝒙 𝟐 −𝟏𝟔𝒙−𝟒𝟖 −𝟐𝟒𝒙 𝟒𝒙 +𝟖 𝟖𝒙 𝒙 −𝟔 −𝟐𝟒𝒙+𝟖𝒙=−𝟏𝟔𝒙 − 𝟒𝒙+𝟖 𝒙−𝟔

Mrs. Rivas Ch 4 Test Review 𝑨𝒏𝒔𝒘𝒆𝒓: (𝒙+𝟖)(𝒙−𝟖) 10. 𝑥²−64 Ida S. Baker H.S. Ch 4 Test Review (4-4)What is the expression in factored form? 𝒙 𝟐 =𝒙 𝟒 =𝟐 10. 𝑥²−64 𝑨 𝟐 − 𝑩 𝟐 = 𝑨−𝑩 𝑨+𝑩 𝑨𝒏𝒔𝒘𝒆𝒓: (𝒙+𝟖)(𝒙−𝟖)

Mrs. Rivas Ch 4 Test Review 𝒙²+𝟏𝟏𝒙+𝟐𝟖=𝟎 (𝒙+𝟕)(𝒙+𝟒)=𝟎 𝒙+𝟕=𝟎 𝒙+𝟒=𝟎 𝒙=−𝟕 Ida S. Baker H.S. Ch 4 Test Review (4-5)What are the solutions of the quadratic equation? 11. 𝑥²+11𝑥=−28 𝒙²+𝟏𝟏𝒙+𝟐𝟖=𝟎 Step # 1: Write the equation in standard form. Step # 2: Factor the quadratic equation. (𝒙+𝟕)(𝒙+𝟒)=𝟎 𝒙+𝟕=𝟎 𝒙+𝟒=𝟎 Step # 3: Set each answer equal to Zero. 𝒙=−𝟕 𝒙=−𝟒 Step # 4: Solve for x. The solutions are 𝒙=−𝟕 and 𝒙=−𝟒.

Mrs. Rivas Ch 4 Test Review 𝒙²−𝟏𝟐𝒙+𝟑𝟐=𝟎 (𝒙−𝟖)(𝒙−𝟒)=𝟎 𝒙−𝟖=𝟎 𝒙−𝟒=𝟎 𝒙=𝟖 Ida S. Baker H.S. Ch 4 Test Review (4-5)What are the solutions of the quadratic equation? 12. 𝑥²−12𝑥+32=0 𝒙²−𝟏𝟐𝒙+𝟑𝟐=𝟎 Step # 1: Write the equation in standard form. Step # 2: Factor the quadratic equation. (𝒙−𝟖)(𝒙−𝟒)=𝟎 𝒙−𝟖=𝟎 𝒙−𝟒=𝟎 Step # 3: Set each answer equal to Zero. 𝒙=𝟖 𝒙=𝟒 Step # 4: Solve for x. The solutions are 𝒙=𝟖 and 𝒙=𝟒.

Mrs. Rivas Ch 4 Test Review 𝟑𝒙²−𝟓𝒙+𝟐=𝟎 (𝟑𝒙−𝟐)(𝒙−𝟏)=𝟎 𝟑𝒙−𝟐=𝟎 𝒙−𝟏=𝟎 Ida S. Baker H.S. Ch 4 Test Review (4-5)What are the solutions of the quadratic equation? 13. 3 𝑥 2 −5𝑥+2=0 𝟑𝒙²−𝟓𝒙+𝟐=𝟎 Step # 1: Write the equation in standard form. Step # 2: Factor the quadratic equation. (𝟑𝒙−𝟐)(𝒙−𝟏)=𝟎 𝟑𝒙−𝟐=𝟎 𝒙−𝟏=𝟎 Step # 3: Set each answer equal to Zero. 𝒙= 𝟐 𝟑 𝒙=𝟏 Step # 4: Solve for x. The solutions are 𝒙= 𝟐 𝟑 and 𝒙=𝟏.

Mrs. Rivas Ch 4 Test Review 𝟐 𝒙 2 +𝟓𝒙−𝟏𝟐=𝟎 (𝟐𝒙−𝟑)(𝒙+𝟒)=𝟎 𝟐𝒙−𝟑=𝟎 𝒙+𝟒=𝟎 Ida S. Baker H.S. Ch 4 Test Review (4-5)What are the solutions of the quadratic equation? 14. 2 𝑥 2 =−5𝑥+12 𝟐 𝒙 2 +𝟓𝒙−𝟏𝟐=𝟎 Step # 1: Write the equation in standard form. Step # 2: Factor the quadratic equation. (𝟐𝒙−𝟑)(𝒙+𝟒)=𝟎 𝟐𝒙−𝟑=𝟎 𝒙+𝟒=𝟎 Step # 3: Set each answer equal to Zero. 𝒙= 𝟑 𝟐 𝒙=−𝟒 Step # 4: Solve for x. The solutions are 𝒙= 𝟑 𝟐 and 𝒙=−𝟒.

Mrs. Rivas Ch 4 Test Review 15. 𝑥 2 +10𝑥=1 Ida S. Baker H.S. Ch 4 Test Review (4-6) Solve each quadratic equation by completing the square. 15. 𝑥 2 +10𝑥=1 𝑥 2 +10𝑥+ 𝒃 𝟐 𝟐 =1+ 𝒃 𝟐 𝟐 𝑥 2 +10𝑥+ 10 2 2 =1+ 10 2 2 𝑥 2 +10𝑥+25=1+25 𝑥+5 2 =26 𝑥+5 2 =± 26 𝑥+5=± 26 𝑥=−𝟓± 𝟐𝟔

Mrs. Rivas Ch 4 Test Review 16. 𝑥 2 −12𝑥+32=0 Ida S. Baker H.S. Ch 4 Test Review (4-6) Solve each quadratic equation by completing the square. 16. 𝑥 2 −12𝑥+32=0 𝑥 2 −12𝑥+ 𝒃 𝟐 𝟐 =−32+ 𝒃 𝟐 𝟐 𝑥 2 −12𝑥+ −12 2 2 =−32+ −12 2 2 𝑥 2 −12𝑥+36=−32+36 𝑥−6 2 =4 𝑥−6 2 =± 4 𝑥−6=±2 𝑥=6+2 𝑥=6−2 𝒙=𝟒 𝒙=𝟖

Mrs. Rivas Ch 4 Test Review 17. 9 𝑥 2 −12𝑥+4=49 Ida S. Baker H.S. Ch 4 Test Review (4-6) Solve each quadratic equation by completing the square. 17. 9 𝑥 2 −12𝑥+4=49 9𝑥 2 −12𝑥=49−4 9𝑥 2 −12𝑥=45 Find the real b. 9𝑥 2 −12𝑥+ 𝟒 2 2 =45+ 𝟒 2 2 3 3𝑥 2 −𝟒𝑥 9𝑥 2 −12𝑥+4=45+4 3𝑥+2 2 =49 3𝑥+2 2 =± 49 3𝑥+2=±7 3𝑥+2=7 3𝑥+2=−7 3𝑥=5 3𝑥=−9 𝑥=−𝟑 𝑥= 𝟓 𝟑

Mrs. Rivas Ch 4 Test Review 18. 3 𝑥 2 −42𝑥+78=0 Ida S. Baker H.S. Ch 4 Test Review (4-6) Solve each quadratic equation by completing the square. 18. 3 𝑥 2 −42𝑥+78=0 3 𝑥 2 −14𝑥+26 𝑥 2 −14𝑥=−26 𝑥 2 −14𝑥+ −14 2 2 =−26+ −14 2 2 𝑥 2 −14𝑥+49=−26+49 𝑥−7 2 =23 𝑥−7 2 =± 23 𝑥−7=± 23 𝒙=𝟕± 𝟐𝟑

Mrs. Rivas Ch 4 Test Review 19. 2 𝑥 2 +11𝑥−23=−𝑥+3 2 𝑥 2 +12𝑥−26=0 Ida S. Baker H.S. Ch 4 Test Review (4-6) Solve each quadratic equation by completing the square. 19. 2 𝑥 2 +11𝑥−23=−𝑥+3 Take out a. + 𝒙−𝟑 + 𝒙−𝟑 2 𝑥 2 +6𝑥−13 2 𝑥 2 +12𝑥−26=0 𝑥 2 +6𝑥−13=0 𝑥 2 +6𝑥+ 6 2 2 =13+ 6 2 2 𝑥 2 +6𝑥+9=13+9 𝑥+3 2 =22 𝑥+3 2 =± 22 𝑥+3=± 22 𝒙=−𝟑± 𝟐𝟐

Mrs. Rivas Ch 4 Test Review 𝒙= −𝒃± 𝒃²−𝟒𝒂𝒄 𝟐𝒂 Ida S. Baker H.S. Ch 4 Test Review (4-7)Use the Quadratic Formula to solve the equation. 20. −2 𝑥 2 −5𝑥+5=0 𝒙= −𝒃± 𝒃²−𝟒𝒂𝒄 𝟐𝒂 − 𝟐 𝒙 𝟐 +𝟓𝒙−𝟓=𝟎 𝒂=𝟐 𝒙= −(𝟓)± (𝟓)²−𝟒(𝟐)(−𝟓) 𝟐(𝟐) 𝒃=𝟓 𝒄=−𝟓 𝒙=− 𝟓± 𝟐𝟓+𝟒𝟎 𝟒 𝒙= −𝟓± 𝟔𝟓 𝟒

Mrs. Rivas Ch 4 Test Review 21. −16 𝑥 2 −56𝑥=−49 Ida S. Baker H.S. Ch 4 Test Review (4-7)Use the Quadratic Formula to solve the equation. 21. −16 𝑥 2 −56𝑥=−49 𝒙= −𝒃± 𝒃²−𝟒𝒂𝒄 𝟐𝒂 − 𝟏𝟔 𝒙 𝟐 +𝟓𝟔𝒙−𝟒𝟗=𝟎 𝒂=𝟏𝟔 𝒙= −(𝟓𝟔)± (𝟓𝟔)²−𝟒(𝟏𝟔)(−𝟒𝟗) 𝟐(𝟏𝟔) 𝒃=𝟓𝟔 𝒄=−𝟒𝟗 𝒙= −𝟓𝟔± 𝟑𝟏𝟑𝟔+𝟑𝟏𝟑𝟔 𝟑𝟐 𝒙= −𝟓𝟔±𝟓𝟔 𝟐 𝟑𝟐 = −𝟓𝟔 𝟏± 𝟐 𝟑𝟐 = −𝟓𝟔 𝟏± 𝟐 𝟑𝟐 = −𝟕 𝟏± 𝟐 𝟒

Mrs. Rivas Ch 4 Test Review 22. 6 𝑥 2 =𝑥+2 Ida S. Baker H.S. Ch 4 Test Review (4-7)Use the Quadratic Formula to solve the equation. 22. 6 𝑥 2 =𝑥+2 𝒙= −𝒃± 𝒃²−𝟒𝒂𝒄 𝟐𝒂 𝟔 𝒙 𝟐 −𝒙−𝟐=𝟎 𝒂=𝟔 𝒙= −(−𝟏)± (−𝟏)²−𝟒(𝟔)(−𝟐) 𝟐(𝟔) 𝒃=−𝟏 𝒄=−𝟐 𝒙= 𝟏± 𝟏+𝟒𝟖 𝟏𝟐 = 𝟏± 𝟒𝟗 𝟏𝟐 𝒙= 𝟏+𝟕 𝟏𝟐 𝒙= 𝟏−𝟕 𝟏𝟐 𝒙= 𝟐 𝟑 𝒙=− 𝟏 𝟐

Mrs. Rivas Ch 4 Test Review 23. −5 𝑥 2 =3𝑥−2 Ida S. Baker H.S. Ch 4 Test Review (4-7)Use the Quadratic Formula to solve the equation. 23. −5 𝑥 2 =3𝑥−2 𝒙= −𝒃± 𝒃²−𝟒𝒂𝒄 𝟐𝒂 −𝟓 𝒙 𝟐 −𝟑𝒙+𝟐=𝟎 − 𝟓 𝒙 𝟐 +𝟑𝒙−𝟐=𝟎 𝒙= −(𝟑)± (𝟑)²−𝟒(𝟓)(−𝟐) 𝟐(𝟓) 𝒂=𝟓 𝒃=𝟑 𝒙= −𝟑± 𝟗+𝟒𝟎 𝟏𝟎 = −𝟑± 𝟒𝟗 𝟏𝟎 𝒄=−𝟐 𝒙= −𝟑+𝟕 𝟏𝟎 𝒙= −𝟑−𝟕 𝟏𝟎 𝒙= 𝟐 𝟓 𝒙=−𝟏

Mrs. Rivas Ch 4 Test Review −𝟑𝟔𝟎 = −𝟏 ∙ 𝟑𝟔𝟎 =𝒊∙ 𝟑𝟔 ∙ 𝟏𝟎 =𝒊∙𝟔∙ 𝟏𝟎 Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 24. −360 −𝟑𝟔𝟎 = −𝟏 ∙ 𝟑𝟔𝟎 =𝒊∙ 𝟑𝟔 ∙ 𝟏𝟎 =𝒊∙𝟔∙ 𝟏𝟎 =𝟔𝒊 𝟏𝟎

Mrs. Rivas Ch 4 Test Review −𝟏−𝟒+𝟔𝒊+𝟐𝒊 −𝟓+𝟖𝒊 25. −1+6𝑖 +(−4+2𝑖) Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 25. −1+6𝑖 +(−4+2𝑖) −𝟏−𝟒+𝟔𝒊+𝟐𝒊 −𝟓+𝟖𝒊

Mrs. Rivas Ch 4 Test Review 𝟐−𝟓𝒊−𝟑−𝟒𝒊 𝟐−𝟑−𝟓𝒊−𝟒𝒊 −𝟏−𝟗𝒊 26. 2−5𝑖 −(3+4𝑖) Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 26. 2−5𝑖 −(3+4𝑖) 𝟐−𝟓𝒊−𝟑−𝟒𝒊 𝟐−𝟑−𝟓𝒊−𝟒𝒊 −𝟏−𝟗𝒊

Mrs. Rivas Ch 4 Test Review −𝟓+𝟖+𝟑𝒊−𝟐𝒊 𝟑+𝒊 27. −5+3𝑖 −(−8+2𝑖) Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 27. −5+3𝑖 −(−8+2𝑖) −𝟓+𝟖+𝟑𝒊−𝟐𝒊 𝟑+𝒊

Mrs. Rivas Ch 4 Test Review −𝟔+𝟑𝟔𝒊 + 𝟒𝒊−𝟐𝟒𝒊² −𝟔+𝟒𝟎𝒊−𝟐𝟒(−𝟏) −𝟔+𝟒𝟎𝒊+𝟐𝟒 Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 28. (6−4𝑖)(−1+6𝑖) −𝟔+𝟑𝟔𝒊 + 𝟒𝒊−𝟐𝟒𝒊² −𝟔+𝟒𝟎𝒊−𝟐𝟒(−𝟏) −𝟔+𝟒𝟎𝒊+𝟐𝟒 −𝟔+𝟐𝟒+𝟒𝟎𝒊 𝟏𝟖+𝟒𝟎𝒊

Mrs. Rivas Ch 4 Test Review 𝟏𝟔−𝟒𝒊 − 𝟒𝒊+𝒊² 𝟏𝟔−𝟖𝒊+(−𝟏) 𝟏𝟔−𝟏−𝟖𝒊 𝟏𝟓−𝟖𝒊 Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 29. 4−𝑖 2 =(4−𝑖)(4−𝑖) 𝟏𝟔−𝟒𝒊 − 𝟒𝒊+𝒊² 𝟏𝟔−𝟖𝒊+(−𝟏) 𝟏𝟔−𝟏−𝟖𝒊 𝟏𝟓−𝟖𝒊

Mrs. Rivas Ch 4 Test Review ∙ 𝟒+𝒊 𝟒+𝒊 = (−𝟏+𝟑𝒊)(𝟒+𝒊) (𝟒−𝒊)(𝟒+𝒊) Ida S. Baker H.S. Ch 4 Test Review (4-8)Simplify the expression. 30. −1+3𝑖 4−𝑖 ∙ 𝟒+𝒊 𝟒+𝒊 = (−𝟏+𝟑𝒊)(𝟒+𝒊) (𝟒−𝒊)(𝟒+𝒊) = −𝟒−𝒊+𝟏𝟐𝒊+𝟑𝒊² 𝟏𝟔+𝟒𝒊−𝟒𝒊−𝒊² = −𝟒+𝟏𝟏𝒊+𝟑(−𝟏) 𝟏𝟔−(−𝟏) = −𝟒+𝟏𝟏𝒊−𝟑 𝟏𝟕 = −𝟒−𝟑+𝟏𝟏𝒊 𝟏𝟕 = −𝟕+𝟏𝟏𝒊 𝟏𝟕

Mrs. Rivas Ch 4 Test Review 𝒙²+𝟑𝟔=𝟎 −𝟑𝟔 −𝟑𝟔 𝒙²=−𝟑𝟔 𝒙=± −𝟑𝟔 𝒙=±𝟔𝒊 Ida S. Baker H.S. Ch 4 Test Review Find the factors of each expression. 34. 𝑥 2 +36 𝒙²+𝟑𝟔=𝟎 −𝟑𝟔 −𝟑𝟔 𝒙²=−𝟑𝟔 𝒙=± −𝟑𝟔 𝒙=±𝟔𝒊

Mrs. Rivas Ch 4 Test Review −𝟒𝒙 2 −𝟒𝟗=𝟎 +𝟒𝟗 +𝟒𝟗 −𝟒𝒙²=𝟒𝟗 −𝟒 −𝟒 Ida S. Baker H.S. Ch 4 Test Review Find the factors of each expression. 35. −4𝑥 2 −49 −𝟒𝒙 2 −𝟒𝟗=𝟎 +𝟒𝟗 +𝟒𝟗 −𝟒𝒙²=𝟒𝟗 −𝟒 −𝟒 𝒙 2 = 𝟒𝟗 −𝟒 𝒙= 𝟒𝟗 −𝟒 = 𝟒𝟗 −𝟒 =± 𝟕 𝟐𝒊

Mrs. Rivas Ch 4 Test Review Ida S. Baker H.S. Ch 4 Test Review Find all solutions to each quadratic equation. 36. 2 𝑥 2 −3𝑥+5 𝟐𝒙 𝟐 −𝟑𝒙+𝟓 𝟐𝒙 𝟐𝒙 −𝟓 −𝟓𝒙 𝒙 + 𝟏 𝟐𝒙−𝟓𝒙=−𝟑𝒙 2𝑥−5 𝑥+1 =0 2𝑥−5=0 𝑥+1=0 𝑥= 𝟓 𝟐 𝑥= −𝟏

Mrs. Rivas Ch 4 Test Review Ida S. Baker H.S. Ch 4 Test Review Find all solutions to each quadratic equation. 37. −𝑥 2 +2𝑥−10=0 𝒙= −𝒃± 𝒃²−𝟒𝒂𝒄 𝟐𝒂 − 𝒙 𝟐 −𝟐𝒙+𝟏𝟎=𝟎 𝒙= −(−𝟐)± (−𝟐)²−𝟒(𝟏)(𝟏𝟎) 𝟐(𝟏) 𝒂=𝟏 𝒃=−𝟐 𝒙= 𝟐± 𝟒−𝟒𝟎 𝟐 = 𝟐± −𝟑𝟔 𝟐 𝒄=𝟏𝟎 = 𝟐±𝟔𝒊 𝟐 = 𝟐 𝟐 ± 𝟔𝒊 𝟐 =𝟏±𝟑𝒊